數(shù)字運(yùn)算,判斷一個(gè)數(shù)是否接近素?cái)?shù)
A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value.
Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not.
Input
Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone.
Output
For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise.
Sample Input
10 111
2 110
10 123
6 1000
8 2314
0
Sample Output
yes
yes
no
yes
no
The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d .
Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet.
Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1.
Definition
Implemented BFS, DFS and A*
To compile this project, use the following command:
g++ -o search main.cpp
Then you can run it:
./search
The input is loaded from a input file in.txt
Here is the format of the input file:
The first line of the input file shoud contain two chars indicate the source and destination city for breadth first and depth first algorithm.
The second line of input file shoud be an integer m indicate the number of connections for the map.
Following m lines describe the map, each line represents to one connection in this form: dist city1 city2, which means there is a connection between city1 and city2 with the distance dist.
The following input are for A*
The following line contains two chars indicate the source and destination city for A* algorithm.
Then there is an integer h indicate the number of heuristic.
The following h lines is in the form: city dist which means the straight-line distance from the city to B is dist.
The XML Toolbox converts MATLAB data types (such as double, char, struct, complex, sparse, logical) of any level of nesting to XML format and vice versa.
For example,
>> project.name = MyProject
>> project.id = 1234
>> project.param.a = 3.1415
>> project.param.b = 42
becomes with str=xml_format(project, off )
"<project>
<name>MyProject</name>
<id>1234</id>
<param>
<a>3.1415</a>
<b>42</b>
</param>
</project>"
On the other hand, if an XML string XStr is given, this can be converted easily to a MATLAB data type or structure V with the command V=xml_parse(XStr).
It has been suggested1 that an appropriate figure of merit for a low probability of intercept and
detection (LPI/D) waveform is the quantity “Range x Bandwidth / Joule”. That is, the further the
range, the wider the bandwidth and the less amount of energy used to achieve these values, the
more covert is the resultant communications system.