亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲(chóng)蟲(chóng)首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

dEMo

  • Keil的HTTP dEMo程序調(diào)試應(yīng)用指南

    Keil的HTTP dEMo程序調(diào)試應(yīng)用指南

    標(biāo)簽: Keil HTTP dEMo 程序調(diào)試

    上傳時(shí)間: 2014-01-27

    上傳用戶:jhksyghr

  • In this dEMo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind

    In this dEMo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf dEMorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the dEMo.

    標(biāo)簽: Rao-Blackwellised conditional filtering particle

    上傳時(shí)間: 2013-12-14

    上傳用戶:小儒尼尼奧

  • In this dEMo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve r

    In this dEMo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve recently derived, to train a two-layer perceptron, so as to classify medical data (kindly provided by Steve Roberts and Will Penny from EE, Imperial College). The data and simulations are described in: Nando de Freitas, Mahesan Niranjan and Andrew Gee Nonlinear State Space Estimation with Neural Networks and the EM algorithm After downloading the file, type "tar -xf EMdEMo.tar" to uncompress it. This creates the directory EMdEMo containing the required m files. Go to this directory, load matlab5 and type "EMtremor". The figures will then show you the simulation results, including ROC curves, likelihood plots, decision boundaries with error bars, etc. WARNING: Do make sure that you monitor the log-likelihood and check that it is increasing. Due to numerical errors, it might show glitches for some data sets.

    標(biāo)簽: Rauch-Tung-Striebel algorithm smoother which

    上傳時(shí)間: 2016-04-15

    上傳用戶:zhenyushaw

  • This dEMo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This dEMo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdEMo1". In the header of the dEMo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標(biāo)簽: sequential reversible algorithm nstrates

    上傳時(shí)間: 2014-01-18

    上傳用戶:康郎

  • This dEMo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This dEMo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdEMo1". In the header of the dEMo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標(biāo)簽: reversible algorithm the nstrates

    上傳時(shí)間: 2014-01-08

    上傳用戶:cuibaigao

  • C++編寫(xiě)的針對(duì)CP5611 PCI卡的通訊程序dEMo

    C++編寫(xiě)的針對(duì)CP5611 PCI卡的通訊程序dEMo

    標(biāo)簽: 5611 dEMo PCI CP

    上傳時(shí)間: 2013-12-10

    上傳用戶:kristycreasy

  • ST7540 dEMo 下位機(jī)C程序

    ST7540 dEMo 下位機(jī)C程序,配合ST上微機(jī)軟件,有需要得可以參考參考

    標(biāo)簽: 7540 dEMo ST C程序

    上傳時(shí)間: 2014-01-19

    上傳用戶:royzhangsz

  • agg圖形庫(kù)在WINCE下的一個(gè)dEMo

    agg圖形庫(kù)在WINCE下的一個(gè)dEMo,演示了AGG如何在WINCE下用GDI畫(huà)圖。

    標(biāo)簽: WINCE dEMo agg 圖形庫(kù)

    上傳時(shí)間: 2013-12-21

    上傳用戶:mikesering

  • usb isp dEMo source code

    usb isp dEMo source code

    標(biāo)簽: source dEMo code usb

    上傳時(shí)間: 2016-04-22

    上傳用戶:LIKE

  • ucfs文件系統(tǒng)pc版的dEMo演示

    ucfs文件系統(tǒng)pc版的dEMo演示,提供ucfs在pc上移植的全套代碼。

    標(biāo)簽: ucfs dEMo 文件系統(tǒng)

    上傳時(shí)間: 2016-04-23

    上傳用戶:chenlong

主站蜘蛛池模板: 吴川市| 神木县| 广南县| 梨树县| 旬阳县| 焦作市| 东安县| 新河县| 廊坊市| 霍林郭勒市| 贵定县| 久治县| 夏津县| 屯昌县| 南平市| 商丘市| 镇宁| 太湖县| 镇江市| 施秉县| 静宁县| 宝坻区| 通河县| 甘泉县| 广丰县| 尖扎县| 盱眙县| 合江县| 宜黄县| 青神县| 元朗区| 广灵县| 台南市| 开封市| 铁岭县| 白银市| 镇江市| 天祝| 静宁县| 乌拉特前旗| 宁国市|