Abstract: Specifications such as noise, effective number of bits (ENOB), effective resolution, and noise-free resolution inlarge part define how accurate an ADC really is. Consequently, understanding the performance metrics related to noise isone of the most difficult aspects of transitioning from a SAR to a delta-sigma ADC. With the current demand for higherresolution, designers must develop a better understanding of ADC noise, ENOB, effective resolution, and signal-to-noiseratio (SNR). This application note helps that understanding.
Specifying the right reference and applying it correctly isa more difficult task than one might first surmise, consideringthat references are only 2- or 3-terminal devices.Although the word “accuracy” is most often spoken inreference to references, it is dangerous to use this wordtoo freely because it can mean different things to differentpeople. Even more perplexing is the fact that a referenceclassified as a dog in one application is a panacea inanother. This application note will familiarize the readerwith the various aspects of reference “accuracy” andpresent some tips on extracting maximum performancefrom any reference.
The above title is not happenstance and was arrived at afterconsiderable deliberation. As a linear IC manufacturer, it isour goal to encourage users to design and build switchingregulators. A problem is that while everyone agrees thatworking switching regulators are a good thing, everyonealso agrees that they are difficult to get working. Switchingregulators, with their high efficiency and small size, areincreasingly desirable as overall package sizes shrink.Unfortunately, switching regulators are also one of themost difficult linear circuits to design. Mysterious modes,sudden, seemingly inexplicable failures, peculiar regulationcharacteristics and just plain explosions are commonoccurrences. Diodes conduct the wrong way. Things gethot that shouldn’t. Capacitors act like resistors, fusesdon’t blow and transistors do. The output is at ground, andthe ground terminal shows volts of noise.
在需要實時大量輸入漢字的顯示控制處理應用中,利用傳統單片機實現顯示控制的設計方法是較難實現的。帶漢字字庫的液晶模塊的使用使得小容量ROM單片機的大量漢字信息輸入與顯示成為可能。提出了針對漢字字庫編碼的二級索引拼音輸入檢索方法,介紹了以ST7920作為控制器的帶漢字字庫的液晶顯示模塊的接口方法及漢字顯示和控制原理,給出了通用計算機鍵盤在單片機中的串行接口,采用該技術可大大增強單片機的漢字輸入功能。為小容量ROM單片機的大批量漢字信息處理提供了一種漢字輸入解決方案。
Abstract:
It is difficult to realize Chinese characters input method based on the embedded system by using the traditional design method of display control. It is possible to input and display Chinese characters based on the embedded system with the ROM of small content by using the LCD module with Chinese characters.Chinese characters input method of the quadric index recall in allusion to Chinese characters code is brought forward.The interface and the principle of Chinese characters display control based on the LCD module controlled with the ST7920 is introduced too.The serial interface of the computer keyboard in common use and the embedded system is given at the same time. It can enhance the embedded system function of Chinese characters input by using this technology, and provide a kind of Chinese characters input scheme for the embedded system with small capacity ROM.
IntroductionAs chip designers pack more functions into ICs,pin counts continue to grow and the space betweenpins keeps shrinking. Pin spacings of 0.5 mm and0.65 mm are not at all uncommon. The power ofthese new ICs is wonderful, to be sure, but trou-bleshooting them can be a chore because connect-ing scopes and logic analyzers has become muchmore difficult and less dependable.
In today’s world of modular networking and telecommunications design, it is becomingincreasingly difficult to keep alignment with the many different and often changing interfaces,both inter-board and intra-board. Each manufacturer has their own spin on the way in whichdevices are connected. To satisfy the needs of our customers, we must be able to support alltheir interface requirements. For us to be able to make products for many customers, we mustadopt a modular approach to the design. This modularity is the one issue that drives the majorproblem of shifting our bits from one modular interface to another.
When I started writing the first edition of RF Power Amplifiers for Wireless Communications,some time back in 1997, it seemed that I was roaming a largely uninhabitedlandscape. For reasons still not clear to me there were few, if any, otherbooks dedicated to the subject of RF power amplifiers. Right at the same time, however,hundreds of engineers were being assigned projects to design PAs for wirelesscommunications products. It was not, therefore, especially difficult to be successfulwith a book that was fortuitously at the right place and the right time.
Abstract: When people want portable music, they usually rely on battery-powered audio devices. With a bit of engineeringblood (or curiosity) running in your veins, it is not difficult to build a wireless Bluetooth® stereo audio system that can becontrolled with any device that has a Bluetooth connection and a music player
Abstract: While many questions still surround the creation and deployment of the smart grid, the need for a reliablecommunications infrastructure is indisputable. Developers of the IEEE 1901.2 standard identified difficult channel conditionscharacteristic of low-frequency powerline communications and implemented an orthogonal frequency division multiplexing (OFDM)architecture using advanced modulation and channel-coding techniques. This strategy helped to ensure a robust communicationsnetwork for the smart grid.
同步技術是跳頻通信系統的關鍵技術之一,尤其是在快速跳頻通信系統中,常規跳頻通信通過同步字頭攜帶相關碼的方法來實現同步,但對于快跳頻來說,由于是一跳或者多跳傳輸一個調制符號,難以攜帶相關碼。對此引入雙跳頻圖案方法,提出了一種適用于快速跳頻通信系統的同步方案。采用短碼攜帶同步信息,克服了快速跳頻難以攜帶相關碼的困難。分析了同步性能,仿真結果表明該方案同步時間短、虛警概率低、捕獲概率高,同步性能可靠。
Abstract:
Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.