亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

factorization

  • factorization.zip

    factorization.zip

    標簽: factorization zip

    上傳時間: 2015-03-03

    上傳用戶:wendy15

  • Common Martix Operation ,include transpose, qr-factorization, trangular martix

    Common Martix Operation ,include transpose, qr-factorization, trangular martix

    標簽: qr-factorization Operation transpose trangular

    上傳時間: 2013-11-30

    上傳用戶:xc216

  • Code to run the Non-negative Matrix factorization algorithm as presented in the Lee, Seung 1999 Natu

    Code to run the Non-negative Matrix factorization algorithm as presented in the Lee, Seung 1999 Nature paper.

    標簽: factorization Non-negative algorithm presented

    上傳時間: 2016-01-19

    上傳用戶:litianchu

  • 2. Using QR factorization to find all of the eigenvalues and eigenvectors for the following matrix

    2. Using QR factorization to find all of the eigenvalues and eigenvectors for the following matrix

    標簽: factorization eigenvectors eigenvalues following

    上傳時間: 2014-01-14

    上傳用戶:cuiyashuo

  • 非負矩陣分解技術(Nonnegtive Matrix factorization 一種信號或圖像的特征提取的方法

    非負矩陣分解技術(Nonnegtive Matrix factorization 一種信號或圖像的特征提取的方法,也可用于圖像壓縮

    標簽: factorization Nonnegtive Matrix 非負矩陣分解

    上傳時間: 2014-01-18

    上傳用戶:kristycreasy

  • HankelToeplitz and Takagi factorization Package

    HankelToeplitz and Takagi factorization Package

    標簽: HankelToeplitz factorization Package Takagi

    上傳時間: 2017-03-29

    上傳用戶:Shaikh

  • The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statisti

    The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statistics algorithm AS 274 (see comments at the start of the module). A planar-rotation algorithm is used to update the QR- factorization. This makes it suitable for updating regressions as more data become available. The module contains a test for singularities which is simpler and quicker than calculating the singular-value decomposition. An important feature of the algorithm is that it does not square the condition number. The matrix X X is not formed. Hence it is suitable for ill- conditioned problems, such as fitting polynomials. By taking advantage of the MODULE facility, it has been possible to remove many of the arguments to routines. Apart from the new function VARPRD, and a back-substitution routine BKSUB2 which it calls, the routines behave as in AS 274.

    標簽: least-squares unconstrained Statisti Applied

    上傳時間: 2015-05-14

    上傳用戶:aig85

  • 平均因子分解法

    平均因子分解法,適用于正定矩陣First, let s recall the definition of the Cholesky decomposition: Given a symmetric positive definite square matrix X, the Cholesky decomposition of X is the factorization X=U U, where U is the square root matrix of X, and satisfies: (1) U U = X (2) U is upper triangular (that is, it has all zeros below the diagonal). It seems that the assumption of positive definiteness is necessary. Actually, it is "positive definite" which guarantees the existence of such kind of decomposition.

    標簽: 分解

    上傳時間: 2013-12-24

    上傳用戶:啊颯颯大師的

  • We present a particle filter construction for a system that exhibits time-scale separation. The sep

    We present a particle filter construction for a system that exhibits time-scale separation. The separation of time-scales allows two simplifications that we exploit: i) The use of the averaging principle for the dimensional reduction of the system needed to solve for each particle and ii) the factorization of the transition probability which allows the Rao-Blackwellization of the filtering step. Both simplifications can be implemented using the coarse projective integration framework. The resulting particle filter is faster and has smaller variance than the particle filter based on the original system. The convergence of the new particle filter to the analytical filter for the original system is proved and some numerical results are provided.

    標簽: construction separation time-scale particle

    上傳時間: 2016-01-02

    上傳用戶:fhzm5658

  • 數值線性代數的Matlab應用程序包 共13個程序函數

    數值線性代數的Matlab應用程序包 共13個程序函數,每個程序函數有相應的例子函數一一對應,以*Example.m命名 程序名稱 用途 Method 方法 GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特 MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特 householder.m QR因子分解 Householder 豪斯霍爾德QR因子分解 ZXEC.m 最小二乘擬合 polynomial interpolant 最小二乘插值多項式 NCLU.m LU因子分解 Gaussian elimination 不選主元素的高斯消元 PALU.m LU因子分解 partial pivoting Gaussian elimination 部分選主元的高斯消元 cholesky.m 楚因子分解 Cholesky factorization 楚列斯基因子分解 PwItrt.m 求最大特征值 Power Iteration 冪迭代 Jacobi.m 求特征值 Jacobi iteration 按標準行方式次序的雅可比算法 Anld.m 求上Hessenberg Arnoldi Iteration 阿諾爾迪迭代 zuisu.m 解線性方程組 Steepest descent 最速下降法 CG.m 解線性方程組 Gradients 共軛梯度 BCG.m 解線性方程組 Biconjugate Gradients 雙共軛梯度

    標簽: Matlab 數值 應用程序 函數

    上傳時間: 2016-05-17

    上傳用戶:小鵬

主站蜘蛛池模板: 安福县| 西充县| 崇明县| 余干县| 黔西县| 蓬安县| 萨迦县| 睢宁县| 洛阳市| 浑源县| 和龙市| 岳阳市| 襄垣县| 凤翔县| 乐陵市| 彰武县| 易门县| 浪卡子县| 绥德县| 海淀区| 灵川县| 错那县| 甘谷县| 朝阳区| 玛纳斯县| 当涂县| 宁河县| 赞皇县| 会理县| 岢岚县| 碌曲县| 同仁县| 鄂尔多斯市| 涟源市| 宿松县| 石屏县| 城市| 天门市| 德江县| 宣汉县| 伊通|