亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

factorization

  • factorization.zip

    factorization.zip

    標簽: factorization zip

    上傳時間: 2015-03-03

    上傳用戶:wendy15

  • Common Martix Operation ,include transpose, qr-factorization, trangular martix

    Common Martix Operation ,include transpose, qr-factorization, trangular martix

    標簽: qr-factorization Operation transpose trangular

    上傳時間: 2013-11-30

    上傳用戶:xc216

  • Code to run the Non-negative Matrix factorization algorithm as presented in the Lee, Seung 1999 Natu

    Code to run the Non-negative Matrix factorization algorithm as presented in the Lee, Seung 1999 Nature paper.

    標簽: factorization Non-negative algorithm presented

    上傳時間: 2016-01-19

    上傳用戶:litianchu

  • 2. Using QR factorization to find all of the eigenvalues and eigenvectors for the following matrix

    2. Using QR factorization to find all of the eigenvalues and eigenvectors for the following matrix

    標簽: factorization eigenvectors eigenvalues following

    上傳時間: 2014-01-14

    上傳用戶:cuiyashuo

  • 非負矩陣分解技術(Nonnegtive Matrix factorization 一種信號或圖像的特征提取的方法

    非負矩陣分解技術(Nonnegtive Matrix factorization 一種信號或圖像的特征提取的方法,也可用于圖像壓縮

    標簽: factorization Nonnegtive Matrix 非負矩陣分解

    上傳時間: 2014-01-18

    上傳用戶:kristycreasy

  • HankelToeplitz and Takagi factorization Package

    HankelToeplitz and Takagi factorization Package

    標簽: HankelToeplitz factorization Package Takagi

    上傳時間: 2017-03-29

    上傳用戶:Shaikh

  • The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statisti

    The module LSQ is for unconstrained linear least-squares fitting. It is based upon Applied Statistics algorithm AS 274 (see comments at the start of the module). A planar-rotation algorithm is used to update the QR- factorization. This makes it suitable for updating regressions as more data become available. The module contains a test for singularities which is simpler and quicker than calculating the singular-value decomposition. An important feature of the algorithm is that it does not square the condition number. The matrix X X is not formed. Hence it is suitable for ill- conditioned problems, such as fitting polynomials. By taking advantage of the MODULE facility, it has been possible to remove many of the arguments to routines. Apart from the new function VARPRD, and a back-substitution routine BKSUB2 which it calls, the routines behave as in AS 274.

    標簽: least-squares unconstrained Statisti Applied

    上傳時間: 2015-05-14

    上傳用戶:aig85

  • 平均因子分解法

    平均因子分解法,適用于正定矩陣First, let s recall the definition of the Cholesky decomposition: Given a symmetric positive definite square matrix X, the Cholesky decomposition of X is the factorization X=U U, where U is the square root matrix of X, and satisfies: (1) U U = X (2) U is upper triangular (that is, it has all zeros below the diagonal). It seems that the assumption of positive definiteness is necessary. Actually, it is "positive definite" which guarantees the existence of such kind of decomposition.

    標簽: 分解

    上傳時間: 2013-12-24

    上傳用戶:啊颯颯大師的

  • We present a particle filter construction for a system that exhibits time-scale separation. The sep

    We present a particle filter construction for a system that exhibits time-scale separation. The separation of time-scales allows two simplifications that we exploit: i) The use of the averaging principle for the dimensional reduction of the system needed to solve for each particle and ii) the factorization of the transition probability which allows the Rao-Blackwellization of the filtering step. Both simplifications can be implemented using the coarse projective integration framework. The resulting particle filter is faster and has smaller variance than the particle filter based on the original system. The convergence of the new particle filter to the analytical filter for the original system is proved and some numerical results are provided.

    標簽: construction separation time-scale particle

    上傳時間: 2016-01-02

    上傳用戶:fhzm5658

  • 數值線性代數的Matlab應用程序包 共13個程序函數

    數值線性代數的Matlab應用程序包 共13個程序函數,每個程序函數有相應的例子函數一一對應,以*Example.m命名 程序名稱 用途 Method 方法 GrmSch.m QR因子分解 classical Gram-Schmidt orthogonalization 格拉母-斯密特 MGrmSch.m QR因子分解 modified Gram-Schmidt iteration 修正格拉母-斯密特 householder.m QR因子分解 Householder 豪斯霍爾德QR因子分解 ZXEC.m 最小二乘擬合 polynomial interpolant 最小二乘插值多項式 NCLU.m LU因子分解 Gaussian elimination 不選主元素的高斯消元 PALU.m LU因子分解 partial pivoting Gaussian elimination 部分選主元的高斯消元 cholesky.m 楚因子分解 Cholesky factorization 楚列斯基因子分解 PwItrt.m 求最大特征值 Power Iteration 冪迭代 Jacobi.m 求特征值 Jacobi iteration 按標準行方式次序的雅可比算法 Anld.m 求上Hessenberg Arnoldi Iteration 阿諾爾迪迭代 zuisu.m 解線性方程組 Steepest descent 最速下降法 CG.m 解線性方程組 Gradients 共軛梯度 BCG.m 解線性方程組 Biconjugate Gradients 雙共軛梯度

    標簽: Matlab 數值 應用程序 函數

    上傳時間: 2016-05-17

    上傳用戶:小鵬

主站蜘蛛池模板: 郁南县| 莱西市| 准格尔旗| 东平县| 郧西县| 大城县| 广州市| 和硕县| 吴堡县| 平泉县| 板桥市| 牙克石市| 财经| 方山县| 巩义市| 田东县| 凤山县| 司法| 陆良县| 孟津县| 新宾| 南充市| 隆德县| 都昌县| 白水县| 娄烦县| 改则县| 永清县| 怀仁县| 屏山县| 景洪市| 社旗县| 增城市| 迁安市| 名山县| 阳东县| 定陶县| 鹰潭市| 田林县| 理塘县| 芦山县|