同步技術是跳頻通信系統的關鍵技術之一,尤其是在快速跳頻通信系統中,常規跳頻通信通過同步字頭攜帶相關碼的方法來實現同步,但對于快跳頻來說,由于是一跳或者多跳傳輸一個調制符號,難以攜帶相關碼。對此引入雙跳頻圖案方法,提出了一種適用于快速跳頻通信系統的同步方案。采用短碼攜帶同步信息,克服了快速跳頻難以攜帶相關碼的困難。分析了同步性能,仿真結果表明該方案同步時間短、虛警概率低、捕獲概率高,同步性能可靠。 Abstract: Synchronization is one of the key techniques to frequency-hopping communication system, especially in the fast frequency hopping communication system. In conventional frequency hopping communication systems, synchronization can be achieved by synchronization-head which can be used to carry the synchronization information, but for the fast frequency hopping, Because modulation symbol is transmitted by per hop or multi-hop, it is difficult to carry the correlation code. For the limitation of fast frequency hopping in carrying correlation code, a fast frequency-hopping synchronization scheme with two hopping patterns is proposed. The synchronization information is carried by short code, which overcomes the difficulty of correlation code transmission in fast frequency-hopping. The performance of the scheme is analyzed, and simulation results show that the scheme has the advantages of shorter synchronization time, lower probability of false alarm, higher probability of capture and more reliable of synchronization.
上傳時間: 2013-11-23
上傳用戶:mpquest
Single-Ended and Differential S-Parameters Differential circuits have been important incommunication systems for many years. In the past,differential communication circuits operated at lowfrequencies, where they could be designed andanalyzed using lumped-element models andtechniques. With the frequency of operationincreasing beyond 1GHz, and above 1Gbps fordigital communications, this lumped-elementapproach is no longer valid, because the physicalsize of the circuit approaches the size of awavelength.Distributed models and analysis techniques are nowused instead of lumped-element techniques.Scattering parameters, or S-parameters, have beendeveloped for this purpose [1]. These S-parametersare defined for single-ended networks. S-parameterscan be used to describe differential networks, but astrict definition was not developed until Bockelmanand others addressed this issue [2]. Bockelman’swork also included a study on how to adapt single-ended S-parameters for use with differential circuits[2]. This adaptation, called “mixed-mode S-parameters,” addresses differential and common-mode operation, as well as the conversion betweenthe two modes of operation.This application note will explain the use of single-ended and mixed-mode S-parameters, and the basicconcepts of microwave measurement calibration.
上傳時間: 2014-03-25
上傳用戶:yyyyyyyyyy
Agilent AN 154 S-Parameter Design Application Note S參數的設計與應用 The need for new high-frequency, solid-state circuitdesign techniques has been recognized both by microwaveengineers and circuit designers. These engineersare being asked to design solid state circuitsthat will operate at higher and higher frequencies.The development of microwave transistors andAgilent Technologies’ network analysis instrumentationsystems that permit complete network characterizationin the microwave frequency rangehave greatly assisted these engineers in their work.The Agilent Microwave Division’s lab staff hasdeveloped a high frequency circuit design seminarto assist their counterparts in R&D labs throughoutthe world. This seminar has been presentedin a number of locations in the United States andEurope.From the experience gained in presenting this originalseminar, we have developed a four-part videotape, S-Parameter Design Seminar. While the technologyof high frequency circuit design is everchanging, the concepts upon which this technologyhas been built are relatively invariant.The content of the S-Parameter Design Seminar isas follows:
標簽: S參數
上傳時間: 2013-12-19
上傳用戶:aa54
The RT9018A/B is a high performance positive voltage regulator designed for use in applications requining very low Input voltage and very low dropout voltage at up to 3A(peak).
上傳時間: 2013-10-10
上傳用戶:geshaowei
It would not be an exaggeration to say that semiconductor devices have transformed humanlife. From computers to communications to internet and video games these devices and the technologies they have enabled have expanded human experience in a way that is unique in history. Semiconductor devices have exploited materials, physics and imaginative applications to spawn new lifestyles. Of course for the device engineer, in spite of the advances, the challenges of reaching higher frequency, lower power consumption, higher power generation etc.
上傳時間: 2013-10-28
上傳用戶:songnanhua
mm to mil tool,mm to mil tool_mm轉mil轉換工具
上傳時間: 2013-10-31
上傳用戶:515414293
mm to mil tool,mm to mil tool_mm轉mil轉換工具
上傳時間: 2013-11-14
上傳用戶:crazyer
Applying power to a standard logic chip, SRAM, or EPROM, usually results in output pinstracking the applied voltage as it rises. Programmable logic attempts to emulate that behavior,but physics forbids perfect emulation, due to the device programmability. It requires care tospecify the pin behavior, because programmable parts encounter unknown variables – yourdesign and your power environment.
上傳時間: 2013-11-24
上傳用戶:253189838
Today’s digital systems combine a myriad of chips with different voltage configurations.Designers must interface 2.5V processors with 3.3V memories—both RAM and ROM—as wellas 5V buses and multiple peripheral chips. Each chip has specific power supply needs. CPLDsare ideal for handling the multi-voltage interfacing, but do require forethought to ensure correctoperation.
上傳時間: 2013-11-10
上傳用戶:yy_cn
為了提高直接轉矩控制(DTC)系統定子磁鏈估計精度,降低電流、電壓測量的隨機誤差,提出了一種基于擴展卡爾曼濾波(EKF)實現異步電機轉子位置和速度估計的方法。擴展卡爾曼濾波器是建立在基于旋轉坐標系下由定子電流、電壓、轉子轉速和其它電機參量所構成的電機模型上,將定子電流、定子磁鏈、轉速和轉子角位置作為狀態變量,定子電壓為輸入變量,定子電流為輸出變量,通過對磁鏈和轉速的閉環控制提高定子磁鏈的估計精度,實現了異步電機的無速度傳感器直接轉矩控制策略,仿真結果驗證了該方法的可行性,提高了直接轉矩的控制性能。 Abstract: In order to improve the Direct Torque Control(DTC) system of stator flux estimation accuracy and reduce the current, voltage measurement of random error, a novel method to estimate the speed and rotor position of asynchronous motor based on extended Kalman filter was introduced. EKF was based on d-p axis motor and other motor parameters (state vector: stator current, stator flux linkage, rotor angular speed and position; input: stator voltage; output: staror current). EKF was designed for stator flux and rotor speed estimation in close-loop control. It can improve the estimated accuracy of stator flux. It is possible to estimate the speed and rotor position and implement asynchronous motor drives without position and speed sensors. The simulation results show it is efficient and improves the control performance.
上傳時間: 2015-01-02
上傳用戶:qingdou