* first open client.cpp and search for that USER_MSG_INTERCEPT(TeamInfo) over it u add this Code: USER_MSG_INTERCEPT(Health) { BEGIN_READ(pbuf,iSize) me.iHealth = READ_BYTE() return USER_MSG_CALL(Health) } * then we search for int HookUserMsg (char *szMsgName, pfnUserMsgHook pfn) and add this Code: REDIRECT_MESSAGE( Health ) *k now we have the health registered and can read it out i stop this hear know cuz i must thanks panzer and w00t.nl that they helped me with it first time! *ok now we go to int HUD_Redraw (float x, int y) and packing this draw code in it Code:
標(biāo)簽: USER_MSG_INTERCEPT TeamInfo client search
上傳時間: 2016-01-22
上傳用戶:ynzfm
The software implements particle filtering and Rao Blackwellised particle filtering for conditionally Gaussian Models. The RB algorithm can be interpreted as an efficient stochastic mixture of Kalman filters. The software also includes efficient state-of-the-art resampling routines. These are generic and suitable for any application. For details, please refer to Rao-Blackwellised Particle Filtering for Fault Diagnosis and On Sequential Simulation-Based Methods for Bayesian Filtering After downloading the file, type "tar -xf demo_rbpf_gauss.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab and run the demo.
標(biāo)簽: filtering particle Blackwellised conditionall
上傳時間: 2014-12-05
上傳用戶:410805624
In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve recently derived, to train a two-layer perceptron, so as to classify medical data (kindly provided by Steve Roberts and Will Penny from EE, Imperial College). The data and simulations are described in: Nando de Freitas, Mahesan Niranjan and Andrew Gee Nonlinear State Space Estimation with Neural Networks and the EM algorithm After downloading the file, type "tar -xf EMdemo.tar" to uncompress it. This creates the directory EMdemo containing the required m files. Go to this directory, load matlab5 and type "EMtremor". The figures will then show you the simulation results, including ROC curves, likelihood plots, decision boundaries with error bars, etc. WARNING: Do make sure that you monitor the log-likelihood and check that it is increasing. Due to numerical errors, it might show glitches for some data sets.
標(biāo)簽: Rauch-Tung-Striebel algorithm smoother which
上傳時間: 2016-04-15
上傳用戶:zhenyushaw
This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.
標(biāo)簽: reversible algorithm the nstrates
上傳時間: 2014-01-08
上傳用戶:cuibaigao
漢諾塔!!! Simulate the movement of the Towers of Hanoi puzzle Bonus is possible for using animation eg. if n = 2 A→B A→C B→C if n = 3 A→C A→B C→B A→C B→A B→C A→C
標(biāo)簽: the animation Simulate movement
上傳時間: 2017-02-11
上傳用戶:waizhang
將魔王的語言抽象為人類的語言:魔王語言由以下兩種規(guī)則由人的語言逐步抽象上去的:α-〉β1β2β3…βm ;θδ1δ2…-〉θδnθδn-1…θδ1 設(shè)大寫字母表示魔王的語言,小寫字母表示人的語言B-〉tAdA,A-〉sae,eg:B(ehnxgz)B解釋為tsaedsaeezegexenehetsaedsae對應(yīng)的話是:“天上一只鵝地上一只鵝鵝追鵝趕鵝下鵝蛋鵝恨鵝天上一只鵝地上一只鵝”。(t-天d-地s-上a-一只e-鵝z-追g-趕x-下n-蛋h-恨)
上傳時間: 2013-12-19
上傳用戶:aix008
本代碼為編碼開關(guān)代碼,編碼開關(guān)也就是數(shù)字音響中的 360度旋轉(zhuǎn)的數(shù)字音量以及顯示器上用的(單鍵飛梭開 關(guān))等類似鼠標(biāo)滾輪的手動計數(shù)輸入設(shè)備。 我使用的編碼開關(guān)為5個引腳的,其中2個引腳為按下 轉(zhuǎn)輪開關(guān)(也就相當(dāng)于鼠標(biāo)中鍵)。另外3個引腳用來 檢測旋轉(zhuǎn)方向以及旋轉(zhuǎn)步數(shù)的檢測端。引腳分別為a,b,c b接地a,c分別接到P2.0和P2.1口并分別接兩個10K上拉 電阻,并且a,c需要分別對地接一個104的電容,否則 因為編碼開關(guān)的觸點抖動會引起輕微誤動作。本程序不 使用定時器,不占用中斷,不使用延時代碼,并對每個 細(xì)分步數(shù)進(jìn)行判斷,避免一切誤動作,性能超級穩(wěn)定。 我使用的編碼器是APLS的EC11B可以參照附件的時序圖 編碼器控制流水燈最能說明問題,下面是以一段流水 燈來演示。
標(biāo)簽: 代碼 編碼開關(guān)
上傳時間: 2017-07-03
上傳用戶:gaojiao1999
【問題描述】 在一個N*N的點陣中,如N=4,你現(xiàn)在站在(1,1),出口在(4,4)。你可以通過上、下、左、右四種移動方法,在迷宮內(nèi)行走,但是同一個位置不可以訪問兩次,亦不可以越界。表格最上面的一行加黑數(shù)字A[1..4]分別表示迷宮第I列中需要訪問并僅可以訪問的格子數(shù)。右邊一行加下劃線數(shù)字B[1..4]則表示迷宮第I行需要訪問并僅可以訪問的格子數(shù)。如圖中帶括號紅色數(shù)字就是一條符合條件的路線。 給定N,A[1..N] B[1..N]。輸出一條符合條件的路線,若無解,輸出NO ANSWER。(使用U,D,L,R分別表示上、下、左、右。) 2 2 1 2 (4,4) 1 (2,3) (3,3) (4,3) 3 (1,2) (2,2) 2 (1,1) 1 【輸入格式】 第一行是數(shù)m (n < 6 )。第二行有n個數(shù),表示a[1]..a[n]。第三行有n個數(shù),表示b[1]..b[n]。 【輸出格式】 僅有一行。若有解則輸出一條可行路線,否則輸出“NO ANSWER”。
標(biāo)簽: 點陣
上傳時間: 2014-06-21
上傳用戶:llandlu
實驗源代碼 //Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關(guān)系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關(guān)系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數(shù) i: "); scanf("%d",&k); 四川大學(xué)實驗報告 printf("請輸入矩陣的列數(shù) j: "); scanf("%d",&n); warshall(k,n); }
上傳時間: 2016-06-27
上傳用戶:梁雪文以
#include "iostream" using namespace std; class Matrix { private: double** A; //矩陣A double *b; //向量b public: int size; Matrix(int ); ~Matrix(); friend double* Dooli(Matrix& ); void Input(); void Disp(); }; Matrix::Matrix(int x) { size=x; //為向量b分配空間并初始化為0 b=new double [x]; for(int j=0;j<x;j++) b[j]=0; //為向量A分配空間并初始化為0 A=new double* [x]; for(int i=0;i<x;i++) A[i]=new double [x]; for(int m=0;m<x;m++) for(int n=0;n<x;n++) A[m][n]=0; } Matrix::~Matrix() { cout<<"正在析構(gòu)中~~~~"<<endl; delete b; for(int i=0;i<size;i++) delete A[i]; delete A; } void Matrix::Disp() { for(int i=0;i<size;i++) { for(int j=0;j<size;j++) cout<<A[i][j]<<" "; cout<<endl; } } void Matrix::Input() { cout<<"請輸入A:"<<endl; for(int i=0;i<size;i++) for(int j=0;j<size;j++){ cout<<"第"<<i+1<<"行"<<"第"<<j+1<<"列:"<<endl; cin>>A[i][j]; } cout<<"請輸入b:"<<endl; for(int j=0;j<size;j++){ cout<<"第"<<j+1<<"個:"<<endl; cin>>b[j]; } } double* Dooli(Matrix& A) { double *Xn=new double [A.size]; Matrix L(A.size),U(A.size); //分別求得U,L的第一行與第一列 for(int i=0;i<A.size;i++) U.A[0][i]=A.A[0][i]; for(int j=1;j<A.size;j++) L.A[j][0]=A.A[j][0]/U.A[0][0]; //分別求得U,L的第r行,第r列 double temp1=0,temp2=0; for(int r=1;r<A.size;r++){ //U for(int i=r;i<A.size;i++){ for(int k=0;k<r-1;k++) temp1=temp1+L.A[r][k]*U.A[k][i]; U.A[r][i]=A.A[r][i]-temp1; } //L for(int i=r+1;i<A.size;i++){ for(int k=0;k<r-1;k++) temp2=temp2+L.A[i][k]*U.A[k][r]; L.A[i][r]=(A.A[i][r]-temp2)/U.A[r][r]; } } cout<<"計算U得:"<<endl; U.Disp(); cout<<"計算L的:"<<endl; L.Disp(); double *Y=new double [A.size]; Y[0]=A.b[0]; for(int i=1;i<A.size;i++ ){ double temp3=0; for(int k=0;k<i-1;k++) temp3=temp3+L.A[i][k]*Y[k]; Y[i]=A.b[i]-temp3; } Xn[A.size-1]=Y[A.size-1]/U.A[A.size-1][A.size-1]; for(int i=A.size-1;i>=0;i--){ double temp4=0; for(int k=i+1;k<A.size;k++) temp4=temp4+U.A[i][k]*Xn[k]; Xn[i]=(Y[i]-temp4)/U.A[i][i]; } return Xn; } int main() { Matrix B(4); B.Input(); double *X; X=Dooli(B); cout<<"~~~~解得:"<<endl; for(int i=0;i<B.size;i++) cout<<"X["<<i<<"]:"<<X[i]<<" "; cout<<endl<<"呵呵呵呵呵"; return 0; }
標(biāo)簽: 道理特分解法
上傳時間: 2018-05-20
上傳用戶:Aa123456789
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1