Lithium–sulfur batteries are a promising energy-storage technology due to their relatively low cost and high theoretical energy density. However, one of their major technical problems is the shuttling of soluble polysulfides between electrodes, resulting in rapid capacity fading. Here, we present a metal–organic framework (MOF)-based battery separator to mitigate the shuttling problem. We show that the MOF-based separator acts as an ionic sieve in lithium–sulfur batteries, which selectively sieves Li+ ions while e ciently suppressing undesired polysulfides migrating to the anode side. When a sulfur-containing mesoporous carbon material (approximately 70 wt% sulfur content) is used as a cathode composite without elaborate synthesis or surface modification, a lithium–sulfur battery with a MOF-based separator exhibits a low capacity decay rate (0.019% per cycle over 1,500 cycles). Moreover, there is almost no capacity fading after the initial 100 cycles. Our approach demonstrates the potential for MOF-based materials as separators for energy-storage applications.
上傳時間: 2017-11-23
上傳用戶:653357637
Lithium–sulfur (Li–S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li–S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li–S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li–S batteries are discussed. Nanostructured metal oxides/ sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium- metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li–S batteries with nanostructured metal oxides/sulfides are also discussed.
上傳時間: 2017-11-23
上傳用戶:653357637
en.CD00004003_Designing with L4973, 3.5 A high efficiency DC-DC converter,en.CD00004003_Designing with L4973, 3.5 A high efficiency DC-DC converter
上傳時間: 2017-12-24
上傳用戶:jatcreo@qq.com
DESIGNING WITH L4978, 2A HIGH EFFICIENCY DC-DC CONVERTERY
上傳時間: 2017-12-24
上傳用戶:jatcreo@qq.com
void IIC_Init(void) { //由于STM8單片機,可以在輸入和輸出條件下讀取IO口狀態,故直接設置為輸出。 GPIO_Init(IIC_SCL_PORT, IIC_SCL_PIN, GPIO_MODE_OUT_OD_HIZ_SLOW ); GPIO_Init(IIC_SDA_PORT, IIC_SDA_PIN, GPIO_MODE_OUT_OD_HIZ_SLOW ); IIC_SCL_H; IIC_SDA_H; } //產生IIC起始信號 void IIC_Start(void) { IIC_SDA_H; IIC_SCL_H; Delay_us(); IIC_SDA_L; //START:when CLK is high,DATA change form high to low Delay_us(); IIC_SCL_L; //鉗住I2C總線,準備發送或接收數據 }
上傳時間: 2018-01-10
上傳用戶:m009988
貼片鋁電解電容封裝庫 SMD Aluminum Electrolytic Capacitors VE Features ? 3 ~ 16φ, 85℃, 2,000 hours assured ? Chip type large capacitance capacitors ? Designed for surface mounting on high density PC board. ? RoHS Compliance
上傳時間: 2018-05-09
上傳用戶:angel20041401
a-Si TFT LCD Single Chip Driver with 240RGBx320 resolution and 262K color, SPI驅動接口
標簽: Newvision 3029S 3029 LCD SPI NV 驅動
上傳時間: 2018-05-09
上傳用戶:sohu
Digital Control of High-Frequency Switched-Mode Power Converters-Wiley-IEEE Press (2015)
上傳時間: 2018-09-15
上傳用戶:賽德克巴萊
Introduction jSMPP is a java implementation (SMPP API) of the SMPP protocol (currently supports SMPP v3.4). It provides interfaces to communicate with a Message Center or an ESME (External Short Message Entity) and is able to handle traffic of 3000-5000 messages per second. jSMPP is not a high-level library. People looking for a quick way to get started with SMPP may be better of using an abstraction layer such as the Apache Camel SMPP component: http://camel.apache.org/smpp.html Travis-CI status: History The project started on Google Code: http://code.google.com/p/jsmpp/ It was maintained by uudashr on Github until 2013. It is now a community project maintained at http://jsmpp.org Release procedure mvn deploy -DperformRelease=true -Durl=https://oss.sonatype.org/service/local/staging/deploy/maven2/ -DrepositoryId=sonatype-nexus-staging -Dgpg.passphrase=<yourpassphrase> log in here: https://oss.sonatype.org click the 'Staging Repositories' link select the repository and click close select the repository and click release License Copyright (C) 2007-2013, Nuruddin Ashr uudashr@gmail.com Copyright (C) 2012-2013, Denis Kostousov denis.kostousov@gmail.com Copyright (C) 2014, Daniel Pocock http://danielpocock.com Copyright (C) 2016, Pim Moerenhout pim.moerenhout@gmail.com This project is licensed under the Apache Software License 2.0.
上傳時間: 2019-01-25
上傳用戶:dragon_longer
The SP2526A device is a dual +3.0V to +5.5V USB Supervisory Power Control Switch ideal for self-powered and bus-powered Universal Serial Bus (USB) applications. Each switch has low on-resistance (110mΩ typical) and can supply 500mA minimum. The fault currents are limited to 1.0A typical and the flag output pin for each switch is available to indicate fault conditions to the USB controller. The thermal shutdown feature will prevent damage to the device when subjected to excessive current loads. The undervoltage lockout feature will ensure that the device will remain off unless there is a valid input voltage present.
標簽: High-Side Switch Power Dual USB
上傳時間: 2019-03-06
上傳用戶:bhitr