亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

libSVM-demo

  • crc算法c++實現源代碼老外寫的 附demo

    crc算法c++實現源代碼老外寫的 附demo

    標簽: demo crc 算法 源代碼

    上傳時間: 2016-04-11

    上傳用戶:xauthu

  • 網絡安全編程之des加密算法實現有demo

    網絡安全編程之des加密算法實現有demo

    標簽: demo des 網絡安全 編程

    上傳時間: 2014-01-26

    上傳用戶:清風冷雨

  • 游程編碼的一個演示程序, 用VC寫的Demo程序, 學習Run Length Coding時很好的參考資料.

    游程編碼的一個演示程序, 用VC寫的Demo程序, 學習Run Length Coding時很好的參考資料.

    標簽: Coding Length Demo Run

    上傳時間: 2016-04-11

    上傳用戶:wanghui2438

  • ICC7AVR v7.13 Pro Loader 1.Install iccv7avr v7.13 demo 2.Copy IccAvrPro713.exe to ICCV7AVR bin fol

    ICC7AVR v7.13 Pro Loader 1.Install iccv7avr v7.13 demo 2.Copy IccAvrPro713.exe to ICCV7AVR bin folder, 3.Run IccAvrPro713.exe. 4.Enjoy!

    標簽: 7.13 IccAvrPro ICCV7AVR iccv7avr

    上傳時間: 2013-12-21

    上傳用戶:小碼農lz

  • Keil的HTTP DEMO程序調試應用指南

    Keil的HTTP DEMO程序調試應用指南

    標簽: Keil HTTP DEMO 程序調試

    上傳時間: 2014-01-27

    上傳用戶:jhksyghr

  • In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional ind

    In this demo, we show how to use Rao-Blackwellised particle filtering to exploit the conditional independence structure of a simple DBN. The derivation and details are presented in A Simple Tutorial on Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks. This detailed discussion of the ABC network should complement the UAI2000 paper by Arnaud Doucet, Nando de Freitas, Kevin Murphy and Stuart Russell. After downloading the file, type "tar -xf demorbpfdbn.tar" to uncompress it. This creates the directory webalgorithm containing the required m files. Go to this directory, load matlab5 and type "dbnrbpf" for the demo.

    標簽: Rao-Blackwellised conditional filtering particle

    上傳時間: 2013-12-14

    上傳用戶:小儒尼尼奧

  • In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve r

    In this demo, I use the EM algorithm with a Rauch-Tung-Striebel smoother and an M step, which I ve recently derived, to train a two-layer perceptron, so as to classify medical data (kindly provided by Steve Roberts and Will Penny from EE, Imperial College). The data and simulations are described in: Nando de Freitas, Mahesan Niranjan and Andrew Gee Nonlinear State Space Estimation with Neural Networks and the EM algorithm After downloading the file, type "tar -xf EMdemo.tar" to uncompress it. This creates the directory EMdemo containing the required m files. Go to this directory, load matlab5 and type "EMtremor". The figures will then show you the simulation results, including ROC curves, likelihood plots, decision boundaries with error bars, etc. WARNING: Do make sure that you monitor the log-likelihood and check that it is increasing. Due to numerical errors, it might show glitches for some data sets.

    標簽: Rauch-Tung-Striebel algorithm smoother which

    上傳時間: 2016-04-15

    上傳用戶:zhenyushaw

  • This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps t

    This demo nstrates how to use the sequential Monte Carlo algorithm with reversible jump MCMC steps to perform model selection in neural networks. We treat both the model dimension (number of neurons) and model parameters as unknowns. The derivation and details are presented in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Sequential Bayesian Estimation and Model Selection Applied to Neural Networks . Technical report CUED/F-INFENG/TR 341, Cambridge University Department of Engineering, June 1999. After downloading the file, type "tar -xf version2.tar" to uncompress it. This creates the directory version2 containing the required m files. Go to this directory, load matlab5 and type "smcdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: sequential reversible algorithm nstrates

    上傳時間: 2014-01-18

    上傳用戶:康郎

  • This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hier

    This demo nstrates the use of the reversible jump MCMC algorithm for neural networks. It uses a hierarchical full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. The derivations and proof of geometric convergence are presented, in detail, in: Christophe Andrieu, Nando de Freitas and Arnaud Doucet. Robust Full Bayesian Learning for Neural Networks. Technical report CUED/F-INFENG/TR 343, Cambridge University Department of Engineering, May 1999. After downloading the file, type "tar -xf rjMCMC.tar" to uncompress it. This creates the directory rjMCMC containing the required m files. Go to this directory, load matlab5 and type "rjdemo1". In the header of the demo file, one can select to monitor the simulation progress (with par.doPlot=1) and modify the simulation parameters.

    標簽: reversible algorithm the nstrates

    上傳時間: 2014-01-08

    上傳用戶:cuibaigao

  • C++編寫的針對CP5611 PCI卡的通訊程序Demo

    C++編寫的針對CP5611 PCI卡的通訊程序Demo

    標簽: 5611 Demo PCI CP

    上傳時間: 2013-12-10

    上傳用戶:kristycreasy

主站蜘蛛池模板: 玉龙| 金沙县| 新河县| 晋城| 定西市| 叶城县| 凌源市| 嘉黎县| 万州区| 尼玛县| 大宁县| 江油市| 邵东县| 兴国县| 神池县| 贺兰县| 庆阳市| 澄江县| 儋州市| 稷山县| 清水县| 苏尼特左旗| 扶余县| 太保市| 阿坝| 寿宁县| 唐山市| 九龙城区| 徐汇区| 武功县| 甘孜县| 惠来县| 天全县| 启东市| 济南市| 博乐市| 宣汉县| 河间市| 常熟市| 富源县| 班戈县|