The first practical examples of mobile communications were used in many countries like
the USA, the UK and Germany in military services, and played a significant role in the
First World War to transfer important information from the front to headquarters to take
further actions. Good and secure wireless communications were an important need for all
military services – army, navy and air force. In this respect, the Second World War was a big
experimental battlefield for the development and evolution of mobile radio. It was in the
interests of governments that after the Second World War the military investment should
be paid back by civilian use, and all western European countries started their so-called first
generation of mobile communication networks.
Public telephone operators and new independent wireless operators through-
out the world are deploying wireless access in an effort to drastically reduce
delivery costs in the most expensive part of the network?the local loop.
Available radio technology enables both existing and new entrants to access
subscribers in a rapid manner and deliver their basic telephony products and
broadband-enhanced services.
Although the origins of radio frequency based wireless networking can be
traced back to the University of Hawaii’s ALOHANET research project
in the 1970s, the key events that led to wireless networking becoming
one of the fastest growing technologies of the early 21st century have
been the ratification of the IEEE 802.11 standard in 1997, and the
subsequent development of interoperability certification by the Wi-Fi
Alliance (formerly WECA).
It has been said that the move from narrowband to broadband access is the second
revolution for the Internet — ‘broadband is more bandwidth than you can use’.
Once users have experienced broadband access there is no turning back. A whole
new world of applications and services becomes possible. No longer is it the ‘world-
wide wait’. The speed of response and visual quality enabled by broadband finally
allows the Internet to reach its true potential.
December 2007, San Jose, California: It seems a long time ago.
I walked into a big networking company to head their small
Power over Ethernet (PoE) applications team. Surprisingly,
I hardly knew anything about PoE prior to that day, having been a
switching-power conversion engineer almost all my life. But it
seemed a great opportunity to widen my horizons. As you can see,
one notable outcome of that seemingly illogical career choice five
years ago is the book you hold in your hands today. I hope this small
body of work goes on to prove worthy of your expectations and also
of all the effort that went into it. Because, behind the scenes, there is a
rather interesting story to relate—about its backdrop, intertwined
with a small slice of modern PoE history, punctuated by a rather res-
tive search for our roots and our true heroes, one that takes us back
almost two centuries
RFID (radio-frequency identification) is the use of a wireless non-contact system
that uses radio-frequencyelectromagnetic fields to transfer datafrom a tag attached
to an object, for the purposes of automatic identification and tracking [38]. The
basic technologies for RFID have been around for a long time. Its root can be traced
back to an espionage device designed in 1945 by Leon Theremin of the Soviet
Union,whichretransmittedincidentradiowaves modulatedwith audioinformation.
After decades of development, RFID systems have gain more and more attention
from both the research community and the industry.
We are in the era of ubiquitous computing in which the use and development of Radio Frequency Iden-
tification (RFID) is becoming more widespread. RFID systems have three main components: readers,
tags, and database. An RFID tag is composed of a small microchip, limited logical functionality, and an
antenna. Most common tags are passive and harvest energy from a nearby RFID reader. This energy is
used both to energize the chip and send the answer back to the reader request. The tag provides a unique
identifier (or an anonymized version of that), which allows the unequivocal identification of the tag
holder (i.e. person, animal, or items).
I can remember buying my first electronic calculator. I was teaching a graduate level statistics course and I
had to have a calculator with a square root function. Back in the late 1960s, that was a pretty high-end
requirement for a calculator. I managed to purchase one at the “educational discount price” of $149.95!
Now, I look down at my desk at an ATmega2560 that is half the size for less than a quarter of the cost and
think of all the possibilities built into that piece of hardware. I am amazed by what has happened to
everything from toasters to car engines. Who-da-thunk-it 40 years ago?
Inventors have long dreamed of creating machines that think. This desire dates
back to at least the time of ancient Greece. The mythical figures Pygmalion,
Daedalus, and Hephaestus may all be interpreted as legendary inventors, and
Galatea, Talos, and Pandora may all be regarded as artificial life ( , Ovid and Martin
2004 Sparkes 1996 Tandy 1997 ; , ; , ).