It was the publisher’s idea that I write
RFID in the Supply Chain: A Guide
to Selection and Implementation
. Not only am I editor of
Enterprise Inte-
gration System
,
Second Edition Handbook
and author of
The
Complete Book
of Middleware
, I also had some innovative business process and project
management ideas on improving the effectiveness of integrating enterprise
systems with information on product traceability, the scope of which has
been widened by the RFID technology mandates.
In a world experiencing challenging transitions in multiple arenas—energy, healthcare, industry,finance, and security, to name a few—Maxim Integrated’s Industrial and Medical SolutionsGroup offers superior signal chain solutions that are innovative, accurate, and cost-effective.
Designers of signal receiver systems often need to performcascaded chain analysis of system performancefrom the antenna all the way to the ADC. Noise is a criticalparameter in the chain analysis because it limits theoverall sensitivity of the receiver. An application’s noiserequirement has a signifi cant infl uence on the systemtopology, since the choice of topology strives to optimizethe overall signal-to-noise ratio, dynamic range andseveral other parameters. One problem in noise calculationsis translating between the various units used by thecomponents in the chain: namely the RF, IF/baseband,and digital (ADC) sections of the circuit.
Abstract: A resistive feedback network is often used to set the output voltage of a power supply. A mechanical potentiometer (pot)conveniently solves the problem of adjusting a power supply. For easier automatic calibration, a mechanical pot can be replaced witha digital pot. This application note presents a calibration solution that uses a digital pot, because digipots are smaller, do not movewith age or vibration, and can be recalibrated remotely. This proposed solution reduces the susceptibility of the system to thetolerance of the digital pot's end-to-end resistance, making the solution optimal fordesigners. This application note also explainssome of the equations required to calculate the resistor chain values and to use a digital pot in this way. A spreadsheet withstandard reisistor values is available for easy calculations.
The PCF8578 is a low power CMOS1 LCD row and column driver, designed to drive dotmatrix graphic displays at multiplex rates of 1:8, 1:16, 1:24 or 1:32. The device has40 outputs, of which 24 are programmable and configurable for the following ratios ofrows/columns: 32¤8, 24¤16, 16¤24 or 8¤32. The PCF8578 can function as a stand-alone LCDcontroller and driver for use in small systems. For larger systems it can be used inconjunction with up to 32 PCF8579s for which it has been optimized. Together these twodevices form a general purpose LCD dot matrix driver chip set, capable of driving displaysof up to 40960 dots. The PCF8578 is compatible with most microcontrollers andcommunicates via a two-line bidirectional bus (I2C-bus). Communication overhead isminimized by a display RAM with auto-incremented addressing and display bankswitching.
LLCR Pin Socket Testing with the Model 3732 High Density Matrix Card
Computer processors (CPUs) today have come a long way from the computer processors of the past. They draw more power, run at lower voltages, and have more pins than ever before.