給定n個(gè)矩陣{A1,A2,…,An},其中Ai與Ai+1是可乘的,i=1,2,…,n-1??疾爝@n個(gè)矩陣的連乘積A1A2…An。由于矩陣乘法滿足結(jié)合律,故計(jì)算矩陣的連乘積可以有許多不同的計(jì)算次序,這種計(jì)算次序可以用加括號(hào)的方式來確定。若一個(gè)矩陣連乘積的計(jì)算次序完全確定,則可以依此次序反復(fù)調(diào)用2個(gè)矩陣相乘的標(biāo)準(zhǔn)算法(有改進(jìn)的方法,這里不考慮)計(jì)算出矩陣連乘積。若A是一個(gè)p×q矩陣,B是一個(gè)q×r矩陣,則計(jì)算其乘積C=AB的標(biāo)準(zhǔn)算法中,需要進(jìn)行pqr次數(shù)乘。
標(biāo)簽:
An
矩陣
上傳時(shí)間:
2016-06-18
上傳用戶:hjshhyy