The family of recent wireless standards included the optional employment of Multiple-Input
Multiple-Output(MIMO)techniques.This was motivatedby the observationaccordingto the
classic Shannon–Hartley law that the achievable channel capacity increases logarithmically
with the transmit power. In contrast, the MIMO capacity increases linearly with the number
of transmit antennas, provided that the number of receive antennas is equal to the number
of transmit antennas. With the further proviso that the total transmit power is increased in
proportion to the number of transmit antennas, a linear capacity increase is achieved upon
increasing the transmit power, which justifies the spectacular success of MIMO systems.
This book is about multipoint cooperative communication, a key technology to
overcome the long-standing problem of limited transmission rate caused by inter-
point interference. However, the multipoint cooperative communication is not an
isolated technology. Instead, it covers a vast range of research areas such as the
multiple-input multiple-outputsystem, the relay network, channel state information
issues, inter-point radio resource management operations, coordinated or joint
transmissions, etc. We suppose that any attempt trying to thoroughly analyze the
multipoint cooperative communication technology might end up working on a
cyclopedia for modern communication systems and easily get lost in discussing all
kinds of cooperative communication schemes as well as the associated models and
their variations.
The family of recent wireless standards included the optional employment of MIMO tyechniques.
This was motivated by the observation according to the classic Shannon-Hartley law the achiev-
able channel capacity increases logarithmically with the transmit power. By contrast, the MIMO
capacity increases linearly with the number of transmit antennas, provided that the number of
receive antennas is equal to the number of transmit antennas.
Emerging technologies such as WiFi and WiMAX are profoundly changing the
landscape of wireless broadband. As we evolve into future generation wireless
networks, a primary challenge is the support of high data rate, integrated multi-
media type traffic over a unified platform. Due to its inherent advantages in
high-speed communication, orthogonal frequency division multiplexing (OFDM)
has become the modem of choice for a number of high profile wireless systems
(e.g., DVB-T, WiFi, WiMAX, Ultra-wideband).
It is more than a decade since GSM was first commercially available. After some unexpected delay, it
seems that finally UMTS is here to stay as a 3G system standardised by 3GPP, at least for another ten
years. UMTS will enable multi-service, multi-rate and flexible IP native-based mobile technologies to be
used in wide area scenarios and also pave the way for a smooth transition from circuit switched voice
networks to mobile packet services.
This book emphasis on multi-user MIMO communication.
It covers a collection of the major topics and issues
in multi-user MIMO systems.
Recent Trends in Multi-user MIMO Communications provides
a tutorial overview of the latest technologies and
research keys related to multi-user communication.
Ultra-wideband (UWB) technology enables high data-rate short-range communica-
tion, in excess of hundredmegabit-per-secondsand up to multi-gigabit-per-seconds,
over a wide spectrum of frequencies, while keeping power consumption at low lev-
els. This low power operation results in a less-interfering co-existence with other
existed communication technologies (e.g., UNII bands).
In addition to carrying a huge amount of data over a distance of up to 230 feet
at very low power (less than 0.5mW), the UWB signal has the ability to penetrate
through the doors and other obstacles that tend to reflect signals at more limited
bandwidths and higher power densities.
Software Radio (SR) is one of the most important emerging technologies for the
future of wireless communication services. By moving radio functionality into
software, it promises to give flexible radio systems that are multi-service, multi-
standard, multi-band, reconfigurable and reprogrammable by software.
Today’s radios are matched to a particular class of signals that are well defined
bytheircarrierfrequencies,modulationformatsandbandwidths.Aradiotransmitter
today can only up convert signals with well-defined bandwidths over defined center
frequencies, while, on the other side of the communication chain, a radio receiver
can only down convert well-defined signal bandwidths, transmitted over specified
carrier frequencies.
A mobile ad-hoc network (MANET) is formed by multiple moving nodes
equipped with wireless transceivers. The mobile nodes communicate with
each other through multi-hop wireless links, where every node can transmit
and receive information. Mobile ad-hoc networks have become increasingly
important in areas where deployment of communications infrastructure is
difficult.