Over the past few decades, wireless communications and networking have witnessed an
unprecedented growth, and have become pervasive much sooner than anyone could have
predicted. For example, cellular wireless networks are expected to become the dominant
and ubiquitous telecommunication means in the next few decades. The widespread
success of cellular and WLAN systems prompts the development of advanced wireless
systems to provide access to information services beyond voice such as telecommuting,
video conferencing, interactive media, real-time internet gaming, and so on, anytime
and anywhere.
It is commonly accepted today that optical fiber communications have revolutionized
telecommunications. Indeed, dramatic changes have been induced in the way we interact
with our relatives, friends, and colleagues: we retrieve information, we entertain and
educate ourselves, we buy and sell, we organize our activities, and so on, in a long list
of activities. Optical fiber systems initially allowed for a significant curb in the cost of
transmission and later on they sparked the process of a major rethinking regarding some,
generation-old, telecommunication concepts like the (OSI)-layer definition, the lack of
cross-layer dependency, the oversegmentation and overfragmentation of telecommunica-
tions networks, and so on.
The telecommunications industry is undoubtedly in a period of radical change with
the advent of mobile broadband radio access and the rapid convergence of Internet
and mobile services. Some of these changes have been enabled by a fundamental
shift in the underlying technologies; mobile networks are now increasingly based
on a pure Internet Protocol (IP) network architecture. Since the first edition of this
book was published in 2009, a multitude of connected devices from eBook readers
to smartphones and even Machine-to-Machine (M2M) technologies have all started
to benefit from mobile broadband. The sea change over the last few years is only the
beginning of a wave of new services that will fundamentally change our economy, our
society, and even our environment. The evolution towards mobile broadband is one of
the core underlying parts of this revolution and is the focus of this book.
Throughout the course of my work in multihop mobile ad hoc networks (MANET)
over the last several years, I reached the conclusion that mobility models and perfor-
mance metrics need to be treated in detail in designing these networks that are the
ultimatefrontierinwirelesscommunications. Awidevarietyofmobilitymodelscan
be used by mobile nodes.
With the rapid growth in the number of wireless applications, services and devices,
using a single wireless technology such as a second generation (2G) and third gener-
ation (3G) wireless system would not be efficient to deliver high speed data rate and
quality-of-service (QoS) support to mobile users in a seamless way. The next genera-
tion wireless systems (also sometimes referred to as Fourth generation (4G) systems)
are being devised with the vision of heterogeneity in which a mobile user/device will
be able to connect to multiple wireless networks (e.g., WLAN, cellular, WMAN)
simultaneously.
Complex networks are powerful allies of our quest to tackle complexity in all
of science. Many lines can be written about the benefits of using networks to
study complex systems. Nevertheless, if I had to name their single most appealing
property,Iwouldsaysimplicity.Onecanmaptheinteractingelementsofanysystem
to a set of nodes, and connect these nodes with a set of links according to their
interactions.
Mobilenetworkoperatorswillmeetmanychallengesinthecomingyears.Itisexpectedthatthe
numberofpeopleconnected,wirelineandwireless,willreachfivebillionby2015.Atthesame
time, people use more wireless services and they expect similar user experience to what they
can now get from fixed networks. Because of that we will see a hundred-fold increase in
network traffic in the near future. At the same time markets are saturating and the revenue per
bit is dropping.
Microwave radio network design is a subset of activities that constitute
the overall transmission network design. Transmission networks are
sometimes called transport networks, access networks, or connectivity
networks. For many wireless carriers, microwave is becoming a popu-
lar preference over wireline (leased lines) transport for many reasons,
especially as microwave radio equipment costs decrease and installation
becomes simpler. Low monthly operating costs can undercut those of
typical single (and especially multiple) T1/E1 expenses, proving it to be
more economical over the long term—usually two to four years. Network
operators also like the fact that they can own and control microwave
radio networks instead of relying on other service providers for network
components.
When we started thinking about writing the first edition of this book a few years ago, we had been
working together for more than five years on the borderline between propagation and signal processing.
Therefore, it is not surprising that this book deals with propagation models and design tools for MIMO
wireless communications. Yet, this book should constitute more than a simple combination of these
two domains. It hopefully conveys our integrated understanding of MIMO, which results from endless
controversial discussions on various multi-antenna related issues, as well as various interactions with
numerous colleagues. Obviously, this area of technology is so large that it is beyond our aim to cover all
aspects in details. Rather, our goal is to provide researchers, R&D engineers and graduate students with
a comprehensive coverage of radio propagation models and space–time signal processing techniques
for multi-antenna, multi-user and multi-cell networks.
This books presents the research work of COST 273 Towards Mobile Broadband Multimedia
networks, hence, it reports on the work performed and on the results achieved within the project
by its participants. The material presented here corresponds to the results obtained in four years
of collaborative work by more than 350 researchers from 137 institutions (universities, operators,
manufacturers, regulators, independent laboratories and others – a full list is provided in Appendix
B) belonging to 29 countries (mainly European, but also from Asia and North America) in the area of
mobileradio. Theobjectiveofpublishingtheseresultsasabookisessentiallytomakethemavailable
to an audience wider than the project. In fact, it just follows a ‘tradition’ of previous COST Actions
in this area of telecommunications, i.e. COST 207, 231 and 259.