All inputs of the C16x family have Schmitt-Trigger input characteristics. These Schmitt-Triggers are intended to always provide proper internal low and high levels, even if anundefined voltage level (between TTL-VIL and TTL-VIH) is externally applied to the pin.The hysteresis of these inputs, however, is very small, and can not be properly used in anapplication to suppress signal noise, and to shape slow rising/falling input transitions.Thus, it must be taken care that rising/falling input signals pass the undefined area of theTTL-specification between VIL and VIH with a sufficient rise/fall time, as generally usualand specified for TTL components (e.g. 74LS series: gates 1V/us, clock inputs 20V/us).The effect of the implemented Schmitt-Trigger is that even if the input signal remains inthe undefined area, well defined low/high levels are generated internally. Note that allinput signals are evaluated at specific sample points (depending on the input and theperipheral function connected to it), at that signal transitions are detected if twoconsecutive samples show different levels. Thus, only the current level of an input signalat these sample points is relevant, that means, the necessary rise/fall times of the inputsignal is only dependant on the sample rate, that is the distance in time between twoconsecutive evaluation time points. If an input signal, for instance, is sampled throughsoftware every 10us, it is irrelevant, which input level would be seen between thesamples. Thus, it would be allowable for the signal to take 10us to pass through theundefined area. Due to the sample rate of 10us, it is assured that only one sample canoccur while the signal is within the undefined area, and no incorrect transition will bedetected. For inputs which are connected to a peripheral function, e.g. capture inputs, thesample rate is determined by the clock cycle of the peripheral unit. In the case of theCAPCOM unit this means a sample rate of 400ns @ 20MHz CPU clock. This requiresinput signals to pass through the undefined area within these 400ns in order to avoidmultiple capture events.For input signals, which do not provide the required rise/fall times, external circuitry mustbe used to shape the signal transitions.In the attached diagram, the effect of the sample rate is shown. The numbers 1 to 5 in thediagram represent possible sample points. Waveform a) shows the result if the inputsignal transition time through the undefined TTL-level area is less than the time distancebetween the sample points (sampling at 1, 2, 3, and 4). Waveform b) can be the result ifthe sampling is performed more than once within the undefined area (sampling at 1, 2, 5,3, and 4).Sample points:1. Evaluation of the signal clearly results in a low level2. Either a low or a high level can be sampled here. If low is sampled, no transition willbe detected. If the sample results in a high level, a transition is detected, and anappropriate action (e.g. capture) might take place.3. Evaluation here clearly results in a high level. If the previous sample 2) had alreadydetected a high, there is no change. If the previous sample 2) showed a low, atransition from low to high is detected now.
MPC7400 Part Number SpeciÞcationThis document describes part number speciÞc changes to recommended operating conditions and revised electrical speciÞcations,as applicable, from those described in the generalMPC7400 Hardware SpeciÞcations.SpeciÞcations provided in this Part Number SpeciÞcation supersede those in theMPC7400 Hardware SpeciÞcationsdated 9/99(order #: MPC7400EC/D) for these part numbers only; speciÞcations not addressed herein are unchanged. This document isfrequently updated, refer to the website at http://www.mot.com/SPS/PowerPC/ for the latest version.Note that headings and table numbers in this data sheet are not consecutively numbered. They are intended to correspond to theheading or table affected in the general hardware speciÞcation.
This document describes part number speciÞc changes to recommended operating conditions and revised electrical speciÞcations,as applicable, from those described in the generalMPC7400 Hardware SpeciÞcations.SpeciÞcations provided in this Part Number SpeciÞcation supersede those in theMPC7400 Hardware SpeciÞcationsdated 9/99(order #: MPC7400EC/D) for these part numbers only; speciÞcations not addressed herein are unchanged. This document isfrequently updated, refer to the website at http://www.mot.com/SPS/PowerPC/ for the latest version.Note that headings and table numbers in this data sheet are not consecutively numbered. They are intended to correspond to theheading or table affected in the general hardware speciÞcation.Part numbers addressed in this document are listed in Table A. For more detailed ordering information see Table B.
1 Communication Protocol (Computer as master)
The communication protocol describes here allows your computer to access 4096 internal registers (W0000-W4095) and 1024 internal relays (B0000-B1023) in the Workstation..
1.1 Request Message Format
Request message is a command message to be sent from the computer to the Workstation. The data structure of request message is shown below. Note that numbers are always in hexadecimal form and converted into ASCII characters. For example, Workstation unit number 14 will appear in the message as character 0(30h) followed by character E(45h); a BCC of 5Ah will appear in the message as character 5(35h) followed by character A(41h).
Tug of War(A tug of war is to be arranged at the local office picnic. For the tug of war, the picnickers must be divided into two teams. Each person must be on one team or the other the number of people on the two teams must not differ by more than 1 the total weight of the people on each team should be as nearly equal as possible. The first line of input contains n the number of people at the picnic. n lines follow. The first line gives the weight of person 1 the second the weight of person 2 and so on. Each weight is an integer between 1 and 450. There are at most 100 people at the picnic. Your output will be a single line containing 2 numbers: the total weight of the people on one team, and the total weight of the people on the other team. If these numbers differ, give the lesser first. )
2^x mod n = 1 acm競賽題 Give a number n, find the minimum x that satisfies 2^x mod n = 1.
Input
One positive integer on each line, the value of n.
Output
If the minimum x exists, print a line with 2^x mod n = 1.
Print 2^? mod n = 1 otherwise.
You should replace x and n with specific numbers.
Sample Input
2
5
Sample Output
2^? mod 2 = 1
2^4 mod 5 = 1
The EM algorithm is short for Expectation-Maximization algorithm. It is based on an iterative optimization of the centers and widths of the kernels. The aim is to optimize the likelihood that the given data points are generated by a mixture of Gaussians. The numbers next to the Gaussians give the relative importance (amplitude) of each component.
This build is for developing a "binary-to-BCD" converter for use in
// displaying numerals in base-10 so that people can read and interpret the
// numbers more readily than they could if the numbers were displayed in
// binary or hexadecimal format. Also, a "BCD-to-binary" converter is
// tested in this build.