msp430The LDC1312 and LDC1314 are 2- and 4-channel,
1? Easy-to-use – minimal configuration required
12-bit inductance to digital converters (LDCs) for
? Measure up to 4 sensors with one IC
inductive sensing solutions. With multiple channels ? Multiple channels support environmental and and support for remote sensing, the LDC1312 and aging compensation LDC1314 enable the performance and reliability benefits of inductive sensing to be realized at minimal? Multi-channel remote sensing provides lowest cost and power. The products are easy to use, onlysystem cost requiring that the sensor frequency be within 1 kHz ? Pin-compatible medium and high-resolution and 10 MHz to begin sensing. The wide 1 kHz to 10 options MHz sensor frequency range also enables use of very small PCB coils, further reducing sensing– LDC1312/4: 2/4-ch 12-bit LDC solution cost and size.– LDC1612/4: 2/4-ch 28
Licensed spectrum remains 3GPP operators’ top priority to deliver
advanced services and user experience
Opportunistic use of unlicensed spectrum is becoming an important
complement for operators to meet the growing traffic demand
Moving forward 3GPP operators will have two options to offload
traffic to unlicensed spectrum:
1. Wi-Fi (via LTE/Wi-Fi interworking)
2. LTE over unlicensed
It will then be up to each individual operator to choose which
approach to use, which will depend on a number of factors
Since the first edition of the book was published, the field of modeling and simulation of
communication systems has grown and matured in many ways, and the use of simulation as a
day-to-day tool is now even more common practice. Many new modeling and simulation
approaches have been developed in the recent years, many more commercial simulation
packages are available, and the evolution of powerful general mathematical applications
packages has provided still more options for computer-aided design and analysis. With the
current interest in digital mobile communications, a primary area of application of modeling
and simulation is now to wireless systems of a different flavor than the traditional ones.
The large-scale deployment of the smart grid (SG) paradigm could play a strategic role in
supporting the evolution of conventional electrical grids toward active, flexible and self-
healing web energy networks composed of distributed and cooperative energy resources.
From a conceptual point of view, the SG is the convergence of information and
operational technologies applied to the electric grid, providing sustainable options to
customers and improved security. Advances in research on SGs could increase the
efficiency of modern electrical power systems by: (i) supporting the massive penetration
of small-scale distributed and dispersed generators; (ii) facilitating the integration of
pervasive synchronized metering systems; (iii) improving the interaction and cooperation
between the network components; and (iv) allowing the wider deployment of self-healing
and proactive control/protection paradigms.
A revolution in power industries, including generation, transmission and distribution, driven by
environmental and economic considerations, is taking place all over the world. The smart grid allows for
integration of diverse generation and storage options, reduced losses, improved efficiencies, increased
grid flexibility, reduced power outages, allowing for competitive electricity pricing and integration of
electric vehicles and overall becoming more responsive to market, consumer and societal needs. It is
bringing profound changes to both power systems and many related industries.
The large-scale deployment of the smart grid (SG) paradigm could play a strategic role in
supporting the evolution of conventional electrical grids toward active, flexible and self-
healing web energy networks composed of distributed and cooperative energy resources.
From a conceptual point of view, the SG is the convergence of information and
operational technologies applied to the electric grid, providing sustainable options to
customers and improved security. Advances in research on SGs could increase the
efficiency of modern electrical power systems by: (i) supporting the massive penetration
of small-scale distributed and dispersed generators; (ii) facilitating the integration of
pervasive synchronized metering systems; (iii) improving the interaction and cooperation
between the network components; and (iv) allowing the wider deployment of self-healing
and proactive control/protection paradigms.
HRVAS is a complete and self-contained heart rate variability analysis software (HRVAS) package. HRVAS offers several preprocessing options. HRVAS offers time-domeain, freq-domain, time-frequency, and nonlinear HRV analysis. All results can be exported to an Excel file. For processing many files HRVAS offers a bach processing feature. All settings/options can be saved to a .mat file and reloaded for future HRV analysis. Upon starting HRVAS all previously used settings/options are loaded.
首先下載軟件,解壓軟件,安裝在程序中找到SEGGER,選里面的J-FLASH,進(jìn)入界面,剛開始的那個界面可以忽略,不用建project也可以;單擊菜單欄的“options---Project settings”打開設(shè)置,進(jìn)行jlink配置;正在General選項,選擇“USB”,一般都是默認(rèn)配置,確認(rèn)一下即可;然后在CPU選項,選擇芯片型號,先選擇“Device”才能選擇芯片型號,芯片型號,要根據(jù)你使用的芯片進(jìn)行選擇;在Target interface選項 里面選擇SWD模式;首先Target里面選“Connection”連接目標(biāo)芯片,然后 Target--Auto進(jìn)行程序燒寫;首先Target里面選擇“Connection”連接目標(biāo)芯片,然后 Target--Auto進(jìn)行程序燒寫.SEGGER J-Links are the most widely used line of debug probes available today. They've proven their value for more than 10 years in embedded development. This popularity stems from the unparalleled performance, extensive feature set, large number of supported CPUs, and compatibility with all popular development environments.