BP neural network for time series analysis predicted that by entering the corresponding time-series data to predict the future, suitable for beginners on the BP neural network learning
Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of
Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.
Integrated EMI/Thermal Design forSwitching Power SuppliesWei ZhangThesis submitted to the Faculty of theVirginia Polytechnic Institute and State Universityin partial fulfillment of the requirements for the degree of
Integrated EMI/Thermal Design forSwitching Power SuppliesWei Zhang(ABSTRACT)This work presents the modeling and analysis of EMI and thermal performancefor switch power supply by using the CAD tools. The methodology and design guidelinesare developed.By using a boost PFC circuit as an example, an equivalent circuit model is builtfor EMI noise prediction and analysis. The parasitic elements of circuit layout andcomponents are extracted analytically or by using CAD tools. Based on the model, circuitlayout and magnetic component design are modified to minimize circuit EMI. EMI filtercan be designed at an early stage without prototype implementation.In the second part, thermal analyses are conducted for the circuit by using thesoftware Flotherm, which includes the mechanism of conduction, convection andradiation. Thermal models are built for the components. Thermal performance of thecircuit and the temperature profile of components are predicted. Improved thermalmanagement and winding arrangement are investigated to reduce temperature.In the third part, several circuit layouts and inductor design examples are checkedfrom both the EMI and thermal point of view. Insightful information is obtained.
This applet illustrates the prediction capabilities of the multi-layer perceptrons. It allows to define an input signal on which prediction will be performed. The user can choose the number of input units, hidden units and output units, as well as the delay between the input series and the predicted output series. Then it is possible to observe interesting prediction properties.
support vector classification machine
% soft margin
% uses "kernel.m"
%
% xtrain: (Ltrain,N) with Ltrain: number of points N: dimension
% ytrain: (Ltrain,1) containing class labels (-1 or +1)
% xrun: (Lrun,N) with Lrun: number of points N: dimension
% atrain: alpha coefficients (from svcm_train on xtrain and ytrain)
% btrain: offest coefficient (from svcm_train on xtrain and ytrain)
%
% ypred: predicted y (Lrun,1) containing class labels (-1 or +1)
% margin: (signed) separation from the separating hyperplane (Lrun,1
runs Kalman-Bucy filter over observations matrix Z
for 1-step prediction onto matrix X (X can = Z)
with model order p
V = initial covariance of observation sequence noise
returns model parameter estimation sequence A,
sequence of predicted outcomes y_pred
and error matrix Ey (reshaped) for y and Ea for a
along with inovation prob P = P(y_t | D_t-1) = evidence
sba, a C/C++ package for generic sparse bundle adjustment is almost invariably used as the last step of every feature-based multiple view reconstruction vision algorithm to obtain optimal 3D structure and motion (i.e. camera matrix) parameter estimates. Provided with initial estimates, BA simultaneously refines motion and structure by minimizing the reprojection error between the observed and predicted image points.
Over the past few decades, wireless communications and networking have witnessed an
unprecedented growth, and have become pervasive much sooner than anyone could have
predicted. For example, cellular wireless networks are expected to become the dominant
and ubiquitous telecommunication means in the next few decades. The widespread
success of cellular and WLAN systems prompts the development of advanced wireless
systems to provide access to information services beyond voice such as telecommuting,
video conferencing, interactive media, real-time internet gaming, and so on, anytime
and anywhere.
The objective of this book is to allow the reader to predict the received
signal power produced by a particular radio transmitter. The first two
chapters examine propagation in free space for point-to-point and
point-to-area transmission, respectively. This is combined with a dis-
cussion regarding the characteristics of antennas for various purposes. In
chapter 3, the effect of obstacles, whether buildings or mountains, is
discussed and analytical methods, whereby the strength of a signal is the
shadow of an obstacle can be predicted, are presented.
This book presents millimeter wave communication system design and analysis at the
level to produce an understanding of the interaction between a wireless system and its
front end so that the overall performance can be predicted. Gigabit wireless commu-
nications require a considerable amount of bandwidth, which can be supported by
millimeter waves. Millimeter wave technology has come of age, and at the time of
writing the standards of IEEE 802.15.3c, WiGig, Wireless HD TM , and the European
Computer Manufacturers Association have recently been finalized.