1.有三根桿子A,B,C。A桿上有若干碟子 2.每次移動(dòng)一塊碟子,小的只能疊在大的上面 3.把所有碟子從A桿全部移到C桿上 經(jīng)過(guò)研究發(fā)現(xiàn),漢諾塔的破解很簡(jiǎn)單,就是按照移動(dòng)規(guī)則向一個(gè)方向移動(dòng)金片: 如3階漢諾塔的移動(dòng):A→C,A→B,C→B,A→C,B→A,B→C,A→C 此外,漢諾塔問(wèn)題也是程序設(shè)計(jì)中的經(jīng)典遞歸問(wèn)題
標(biāo)簽: 移動(dòng) 發(fā)現(xiàn)
上傳時(shí)間: 2016-07-25
上傳用戶:gxrui1991
1. 下列說(shuō)法正確的是 ( ) A. Java語(yǔ)言不區(qū)分大小寫(xiě) B. Java程序以類為基本單位 C. JVM為Java虛擬機(jī)JVM的英文縮寫(xiě) D. 運(yùn)行Java程序需要先安裝JDK 2. 下列說(shuō)法中錯(cuò)誤的是 ( ) A. Java語(yǔ)言是編譯執(zhí)行的 B. Java中使用了多進(jìn)程技術(shù) C. Java的單行注視以//開(kāi)頭 D. Java語(yǔ)言具有很高的安全性 3. 下面不屬于Java語(yǔ)言特點(diǎn)的一項(xiàng)是( ) A. 安全性 B. 分布式 C. 移植性 D. 編譯執(zhí)行 4. 下列語(yǔ)句中,正確的項(xiàng)是 ( ) A . int $e,a,b=10 B. char c,d=’a’ C. float e=0.0d D. double c=0.0f
上傳時(shí)間: 2017-01-04
上傳用戶:netwolf
數(shù)學(xué)實(shí)驗(yàn)中的最速落徑問(wèn)題 A,B是不在一條鉛垂線上的兩點(diǎn),在鏈接A,B兩點(diǎn)的所有光滑曲線中,找出一條曲線,使得初速度為零的質(zhì)點(diǎn),在重力的作用下,自A點(diǎn)下滑到B點(diǎn)所需的時(shí)間最短
標(biāo)簽: 實(shí)驗(yàn)
上傳時(shí)間: 2013-12-18
上傳用戶:bruce
單鏈表刪除 集合a和集合b,刪除在集合a中與集合b元素相同的數(shù)據(jù)
上傳時(shí)間: 2013-12-26
上傳用戶:thinode
給定兩個(gè)集合A、B,集合內(nèi)的任一元素x滿足1 ≤ x ≤ 109,并且每個(gè)集合的元素個(gè)數(shù)不大于105。我們希望求出A、B之間的關(guān)系。 任 務(wù) :給定兩個(gè)集合的描述,判斷它們滿足下列關(guān)系的哪一種: A是B的一個(gè)真子集,輸出“A is a proper subset of B” B是A的一個(gè)真子集,輸出“B is a proper subset of A” A和B是同一個(gè)集合,輸出“A equals B” A和B的交集為空,輸出“A and B are disjoint” 上述情況都不是,輸出“I m confused!”
標(biāo)簽:
上傳時(shí)間: 2017-03-15
上傳用戶:yulg
如果整數(shù)A的全部因子(包括1,不包括A本身)之和等于B;且整數(shù)B的全部因子(包括1,不包括B本身)之和等于A,則將整數(shù)A和B稱為親密數(shù)。求3000以內(nèi)的全部親密數(shù)。 *題目分析與算法設(shè)計(jì) 按照親密數(shù)定義,要判斷數(shù)a是否有親密數(shù),只要計(jì)算出a的全部因子的累加和為b,再計(jì)算b的全部因子的累加和為n,若n等于a則可判定a和b是親密數(shù)。計(jì)算數(shù)a的各因子的算法: 用a依次對(duì)i(i=1~a/2)進(jìn)行模運(yùn)算,若模運(yùn)算結(jié)果等于0,則i為a的一個(gè)因子;否則i就不是a的因子。 *
標(biāo)簽: 整數(shù)
上傳時(shí)間: 2015-04-24
上傳用戶:金宜
源代碼\用動(dòng)態(tài)規(guī)劃算法計(jì)算序列關(guān)系個(gè)數(shù) 用關(guān)系"<"和"="將3個(gè)數(shù)a,b,c依次序排列時(shí),有13種不同的序列關(guān)系: a=b=c,a=b<c,a<b=v,a<b<c,a<c<b a=c<b,b<a=c,b<a<c,b<c<a,b=c<a c<a=b,c<a<b,c<b<a 若要將n個(gè)數(shù)依序列,設(shè)計(jì)一個(gè)動(dòng)態(tài)規(guī)劃算法,計(jì)算出有多少種不同的序列關(guān)系, 要求算法只占用O(n),只耗時(shí)O(n*n).
標(biāo)簽: lt 源代碼 動(dòng)態(tài)規(guī)劃 序列
上傳時(shí)間: 2013-12-26
上傳用戶:siguazgb
The government of a small but important country has decided that the alphabet needs to be streamlined and reordered. Uppercase letters will be eliminated. They will issue a royal decree in the form of a String of B and A characters. The first character in the decree specifies whether a must come ( B )Before b in the new alphabet or ( A )After b . The second character determines the relative placement of b and c , etc. So, for example, "BAA" means that a must come Before b , b must come After c , and c must come After d . Any letters beyond these requirements are to be excluded, so if the decree specifies k comparisons then the new alphabet will contain the first k+1 lowercase letters of the current alphabet. Create a class Alphabet that contains the method choices that takes the decree as input and returns the number of possible new alphabets that conform to the decree. If more than 1,000,000,000 are possible, return -1. Definition
標(biāo)簽: government streamline important alphabet
上傳時(shí)間: 2015-06-09
上傳用戶:weixiao99
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.
標(biāo)簽: represented integers group items
上傳時(shí)間: 2016-01-17
上傳用戶:jeffery
加密程序源代碼* A 變成 C,B 變成 D,a 變成 c,b 變成 d,Y 變成 A, * z 變成 b,以此類推。非字母字符不變。
上傳時(shí)間: 2013-12-28
上傳用戶:stvnash
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1