Internal Interrupts are used to respond to asynchronous requests from a certain part of themicrocontroller that needs to be serviced. Each peripheral in the TriCore as well as theBus Control Unit, the Debug Unit, the Peripheral Control Processor (PCP) and the CPUitself can generate an Interrupt Request.So what is an external Interrupt?An external Interrupt is something alike as the internal Interrupt. The difference is that anexternal Interrupt request is caused by an external event. Normally this would be a pulseon Port0 or Port1, but it can be even a signal from the input buffer of the SSC, indicatingthat a service is requested.The User’s Manual does not explain this aspect in detail so this ApNote will explain themost common form of an external Interrupt request. This ApNote will show that there is aneasy way to react on a pulse on Port0 or Port1 and to create with this impulse an InterruptService Request. Later in the second part of the document, you can find hints on how todebounce impulses to enable the use of a simple switch as the input device.Note: You will find additional information on how to setup the Interrupt System in theApNote “First steps through the TriCore Interrupt System” (AP3222xx)1. It would gobeyond the scope of this document to explain this here, but you will find selfexplanatoryexamples later on.
The 87C576 includes two separate methods of programming theEPROM array, the traditional modified Quick-pulse method, and anew On-Board Programming technique (OBP).Quick pulse programming is a method using a number of devicepins in parallel (see Figure 1) and is the traditional way in which87C51 family members have been programmed. The Quick-pulsemethod supports the following programming functions:– program USER EPROM– verify USER EPROM– program KEY EPROM– program security bits– verify security bits– read signature bytesThe Quick-pulse method is quite easily suited to standardprogramming equipment as evidenced by the numerous vendors of87C51 compatible programmers on the market today. Onedisadvantage is that this method is not well suited to programming inthe embedded application because of the large number of signallines that must be isolated from the application. In addition, parallelsignals from a programmer would need to be cabled to theapplication’s circuit board, or the application circuit board wouldneed to have logic built-in to perform the programming functions.These requirements have generally made in-circuit programmingusing the modified Quick pulse method impractical in almost all87C51 family applications.
This example provides a description of how to use the USART with hardware flowcontrol and communicate with the Hyperterminal.First, the USART2 sends the TxBuffer to the hyperterminal and still waiting fora string from the hyperterminal that you must enter which must end by '\r'character (keypad ENTER button). Each byte received is retransmitted to theHyperterminal. The string that you have entered is stored in the RxBuffer array. The receivebuffer have a RxBufferSize bytes as maximum.
The USART2 is configured as follow: - BaudRate = 115200 baud - Word Length = 8 Bits - One Stop Bit - No parity - Hardware flow control enabled (RTS and CTS signals) - Receive and transmit enabled - USART Clock disabled - USART CPOL: Clock is active low - USART CPHA: Data is captured on the second edge - USART LastBit: The clock pulse of the last data bit is not output to the SCLK pin
Models UWB TX and RX using BPSK fifth derivative.
MATLAB Release: R13
Description: This m file models a UWB system using BPSK with the fifth order derivative of the gaussian pulse with correlation receiver and intgrator.
We address the problem of blind carrier frequency-offset (CFO) estimation in quadrature amplitude modulation,
phase-shift keying, and pulse amplitude modulation
communications systems.We study the performance of a standard
CFO estimate, which consists of first raising the received signal to
the Mth power, where M is an integer depending on the type and
size of the symbol constellation, and then applying the nonlinear
least squares (NLLS) estimation approach. At low signal-to noise
ratio (SNR), the NLLS method fails to provide an accurate CFO
estimate because of the presence of outliers. In this letter, we derive
an approximate closed-form expression for the outlier probability.
This enables us to predict the mean-square error (MSE) on CFO
estimation for all SNR values. For a given SNR, the new results
also give insight into the minimum number of samples required in
the CFO estimation procedure, in order to ensure that the MSE
on estimation is not significantly affected by the outliers.