亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

seg-y

  • 標(biāo)準(zhǔn)的遺傳算法代碼

    標(biāo)準(zhǔn)的遺傳算法代碼,下面是程序:function y=fitness(chrom,p,aim) global P_cross P_mutation [Popsize len]=size(chrom) fitness_gene=zeros(Popsize,1) in_he=zeros(4,1) out_he=zeros(4,1) in_out=0 out_out=0

    標(biāo)簽: 標(biāo)準(zhǔn) 代碼 算法

    上傳時(shí)間: 2013-12-08

    上傳用戶:pkkkkp

  • The VGA example generates a 320x240 diffusion-limited-aggregation (DLA) on Altera DE2 board. A DLA i

    The VGA example generates a 320x240 diffusion-limited-aggregation (DLA) on Altera DE2 board. A DLA is a clump formed by sticky particles adhering to an existing structure. In this design, we start with one pixel at the center of the screen and allow a random walker to bounce around the screen until it hits the pixel at the center. It then sticks and a new walker is started randomly at one of the 4 corners of the screen. The random number generators for x and y steps are XOR feedback shift registers (see also Hamblen, Appendix A). The VGA driver, PLL, and reset controller from the DE2 CDROM are necessary to compile this example. Note that you must push KEY0 to start the state machine.

    標(biāo)簽: diffusion-limited-aggregation DLA generates 320x240

    上傳時(shí)間: 2014-01-16

    上傳用戶:225588

  • 本代碼包為本人的一篇文章<一個(gè)占用內(nèi)存極少的菜單系統(tǒng)的實(shí)現(xiàn)>在在PC上的測(cè)試移植代碼。 ------------------------------ Menu_Src目錄為Menu的源

    本代碼包為本人的一篇文章<一個(gè)占用內(nèi)存極少的菜單系統(tǒng)的實(shí)現(xiàn)>在在PC上的測(cè)試移植代碼。 ------------------------------ Menu_Src目錄為Menu的源代碼 Ks0108.C的void Display_Locate(unsigned char DisplayData, unsigned char X, unsigned char Y)函數(shù)為最底層的顯示函數(shù)。 該函數(shù)調(diào)用LCD模擬函數(shù)來完成顯示。 KeyScan.C的unsigned char KeyScan(void)函數(shù)為鍵盤模擬函數(shù)。 void DelayMs( WORD time ) 延時(shí) ------------------------------ GUI_SIM.exe為編譯后的文件,可以直觀看到這個(gè)GUI的效果. PC鍵盤的4個(gè)按鍵控制菜單周轉(zhuǎn): PC按鍵 菜單中功能 up 向上鍵 確定鍵 進(jìn)入子菜單 down向下鍵 取消鍵 返回父菜單 left向左鍵 向上鍵 菜單項(xiàng)上一項(xiàng) right向右鍵 向下鍵 菜單項(xiàng)下一項(xiàng) 有興趣自己編譯VC工程:\Project\Menu.dsw <一個(gè)占用內(nèi)存極少的菜單系統(tǒng)的實(shí)現(xiàn)>相關(guān)PDF文檔和其他資料在以下鏈接: http://www.ouravr.com/bbs/bbs_content.jsp?bbs_sn=798580&bbs_page_no=3&bbs_id=9999

    標(biāo)簽: Menu_Src Menu 代碼 lt

    上傳時(shí)間: 2014-06-24

    上傳用戶:stvnash

  • 計(jì)算二日期的間隔天數(shù)

    計(jì)算二日期的間隔天數(shù),計(jì)算某日期為星期幾,打印對(duì)象當(dāng)前數(shù)據(jù)的y年m月的月歷,一次增加若干天,對(duì)兩個(gè)日期進(jìn)行其他比較運(yùn)算等。

    標(biāo)簽: 計(jì)算

    上傳時(shí)間: 2016-12-18

    上傳用戶:

  • 視頻編碼電路主要實(shí)現(xiàn)接收8位CCIR656格式的YUV數(shù)據(jù)

    視頻編碼電路主要實(shí)現(xiàn)接收8位CCIR656格式的YUV數(shù)據(jù),(例如MPEG解碼數(shù)據(jù)),并編碼成亮度Y和色度信號(hào)C,以及合成CVBS信號(hào),經(jīng)過D/A轉(zhuǎn)換后輸出。基本的編碼功能包括副載波產(chǎn)生,色差信號(hào)調(diào)制,同步信號(hào)內(nèi)插。 主要應(yīng)用在視頻處理,軍事圖像處理。 GM7221設(shè)計(jì)原理圖

    標(biāo)簽: CCIR 656 YUV 視頻編碼

    上傳時(shí)間: 2013-12-29

    上傳用戶:Divine

  • //下面是畫圓的程序

    //下面是畫圓的程序, //畫線、畫圓、畫各種曲線其實(shí)都很簡(jiǎn)單,歸根到底就是x、y的二元方程嘛 //對(duì)算法感興趣的話建議去找本《計(jì)算機(jī)圖形學(xué)》看看,不是賣關(guān)子哦。實(shí)在是幾句話說不清除,呵呵 // ---------------------------------------------- //字節(jié) void circleDot(unsigned char x,unsigned char y,char xx,char yy)//內(nèi)部函數(shù),對(duì)稱法畫圓的8個(gè)鏡像點(diǎn) {//對(duì)稱法畫圓的8個(gè)鏡像點(diǎn)

    標(biāo)簽: 程序

    上傳時(shí)間: 2014-01-07

    上傳用戶:秦莞爾w

  • 實(shí)驗(yàn)題目:Hermite插值多項(xiàng)式 相關(guān)知識(shí):通過n+1個(gè)節(jié)點(diǎn)的次數(shù)不超過2n+1的Hermite插值多項(xiàng)式為: 其中

    實(shí)驗(yàn)題目:Hermite插值多項(xiàng)式 相關(guān)知識(shí):通過n+1個(gè)節(jié)點(diǎn)的次數(shù)不超過2n+1的Hermite插值多項(xiàng)式為: 其中,Hermite插值基函數(shù) 數(shù)據(jù)結(jié)構(gòu):三個(gè)一維數(shù)組或一個(gè)二維數(shù)組 算法設(shè)計(jì):(略) 編寫代碼:(略) 實(shí)驗(yàn)用例: 已知函數(shù)y=f(x)的一張表(其中 ): x 0.10 0.20 0.30 0.40 0.50 y 0.904837 0.818731 0.740818 0.670320 0.606531 m -0.904837 -0.818731 -0.740818 -0.670320 -0.606531 x 0.60 0.70 0.80 0.90 1.00 y 0.548812 0.496585 0.449329 0.406570 0.367879 m -0.548812 -0.496585 -0.449329 -0.406570 -0.367879 實(shí)驗(yàn)用例:利用Hermite插值多項(xiàng)式 求被插值函數(shù)f(x)在點(diǎn)x=0.55處的近似值。建議:畫出Hermite插值多項(xiàng)式 的曲線。

    標(biāo)簽: Hermite 多項(xiàng)式 插值 實(shí)驗(yàn)

    上傳時(shí)間: 2013-12-24

    上傳用戶:czl10052678

  • Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs

    Batch version of the back-propagation algorithm. % Given a set of corresponding input-output pairs and an initial network % [W1,W2,critvec,iter]=batbp(NetDef,W1,W2,PHI,Y,trparms) trains the % network with backpropagation. % % The activation functions must be either linear or tanh. The network % architecture is defined by the matrix NetDef consisting of two % rows. The first row specifies the hidden layer while the second % specifies the output layer. %

    標(biāo)簽: back-propagation corresponding input-output algorithm

    上傳時(shí)間: 2016-12-27

    上傳用戶:exxxds

  • This function calculates Akaike s final prediction error % estimate of the average generalization e

    This function calculates Akaike s final prediction error % estimate of the average generalization error. % % [FPE,deff,varest,H] = fpe(NetDef,W1,W2,PHI,Y,trparms) produces the % final prediction error estimate (fpe), the effective number of % weights in the network if the network has been trained with % weight decay, an estimate of the noise variance, and the Gauss-Newton % Hessian. %

    標(biāo)簽: generalization calculates prediction function

    上傳時(shí)間: 2014-12-03

    上傳用戶:maizezhen

  • % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is p

    % Train a two layer neural network with the Levenberg-Marquardt % method. % % If desired, it is possible to use regularization by % weight decay. Also pruned (ie. not fully connected) networks can % be trained. % % Given a set of corresponding input-output pairs and an initial % network, % [W1,W2,critvec,iteration,lambda]=marq(NetDef,W1,W2,PHI,Y,trparms) % trains the network with the Levenberg-Marquardt method. % % The activation functions can be either linear or tanh. The % network architecture is defined by the matrix NetDef which % has two rows. The first row specifies the hidden layer and the % second row specifies the output layer.

    標(biāo)簽: Levenberg-Marquardt desired network neural

    上傳時(shí)間: 2016-12-27

    上傳用戶:jcljkh

主站蜘蛛池模板: 依兰县| 上犹县| 平舆县| 邹城市| 武宣县| 拜城县| 禹城市| 西充县| 方正县| 家居| 镇巴县| 莱阳市| 象州县| 舞阳县| 米脂县| 潞西市| 瑞昌市| 恭城| 桐柏县| 海盐县| 黔西县| 桦川县| 卫辉市| 元阳县| 凤凰县| 简阳市| 宁强县| 桑植县| 榕江县| 余干县| 佳木斯市| 太仆寺旗| 安仁县| 福海县| 景泰县| 卢氏县| 曲沃县| 景德镇市| 云浮市| 新竹市| 万载县|