C++完美演繹 經典算法 如 /* 頭文件:my_Include.h */ #include <stdio.h> /* 展開C語言的內建函數指令 */ #define PI 3.1415926 /* 宏常量,在稍后章節再詳解 */ #define circle(radius) (PI*radius*radius) /* 宏函數,圓的面積 */ /* 將比較數值大小的函數寫在自編include文件內 */ int show_big_or_small (int a,int b,int c) { int tmp if (a>b) { tmp = a a = b b = tmp } if (b>c) { tmp = b b = c c = tmp } if (a>b) { tmp = a a = b b = tmp } printf("由小至大排序之后的結果:%d %d %d\n", a, b, c) } 程序執行結果: 由小至大排序之后的結果:1 2 3 可將內建函數的include文件展開在自編的include文件中 圓圈的面積是=201.0619264
數字運算,判斷一個數是否接近素數
A Niven number is a number such that the sum of its digits divides itself. For example, 111 is a Niven number because the sum of its digits is 3, which divides 111. We can also specify a number in another base b, and a number in base b is a Niven number if the sum of its digits divides its value.
Given b (2 <= b <= 10) and a number in base b, determine whether it is a Niven number or not.
Input
Each line of input contains the base b, followed by a string of digits representing a positive integer in that base. There are no leading zeroes. The input is terminated by a line consisting of 0 alone.
Output
For each case, print "yes" on a line if the given number is a Niven number, and "no" otherwise.
Sample Input
10 111
2 110
10 123
6 1000
8 2314
0
Sample Output
yes
yes
no
yes
no
We have a group of N items (represented by integers from 1 to N), and we know that there is some total order defined for these items. You may assume that no two elements will be equal (for all a, b: a<b or b<a). However, it is expensive to compare two items. Your task is to make a number of comparisons, and then output the sorted order. The cost of determining if a < b is given by the bth integer of element a of costs (space delimited), which is the same as the ath integer of element b. Naturally, you will be judged on the total cost of the comparisons you make before outputting the sorted order. If your order is incorrect, you will receive a 0. Otherwise, your score will be opt/cost, where opt is the best cost anyone has achieved and cost is the total cost of the comparisons you make (so your score for a test case will be between 0 and 1). Your score for the problem will simply be the sum of your scores for the individual test cases.