The μPSD32xx family, from ST, consists of Flash programmable system devices with a 8032 MicrocontrollerCore. Of these, the μPSD3234A and μPSD3254A are notable for having a complete implementationof the USB hardware directly on the chip, complying with the Universal Serial Bus Specification, Revision1.1.This application note describes a demonstration program that has been written for the DK3200 hardwaredemonstration kit (incorporating a μPSD3234A device). It gives the user an idea of how simple it is to workwith the device, using the HID class as a ready-made device driver for the USB connection.IN-APPLICATION-PROGRAMMING (IAP) AND IN-SYSTEM-PROGRAMMING (ISP)Since the μPSD contains two independent Flash memory arrays, the Micro Controller Unit (MCU) can executecode from one memory while erasing and programming the other. Product firmware updates in thefield can be reliably performed over any communication channel (such as CAN, Ethernet, UART, J1850)using this unique architecture. For In-Application-Programming (IAP), all code is updated through theMCU. The main advantage for the user is that the firmware can be updated remotely. The target applicationruns and takes care on its own program code and data memory.IAP is not the only method to program the firmware in μPSD devices. They can also be programmed usingIn-System-Programming (ISP). A IEEE1149.1-compliant JTAG interface is included on the μPSD. Withthis, the entire device can be rapidly programmed while soldered to the circuit board (Main Flash memory,Secondary Boot Flash memory, the PLD, and all configuration areas). This requires no MCU participation.The MCU is completely bypassed. So, the μPSD can be programmed or reprogrammed any time, anywhere, even when completely uncommitted.Both methods take place with the device in its normal hardware environment, soldered to a printed circuitboard. The IAP method cannot be used without previous use of ISP, because IAP utilizes a small amountof resident code to receive the service commands, and to perform the desired operations.
The PL2303 USB to Serial adapter is your smart and convenient accessory forconnecting RS-232 serial devices to your USB-equipped Windows host computer. Itprovides a bridge connection with a standard DB 9-pin male serial port connector inone end and a standard Type-A USB plug connector on the other end. You simplyattach the serial device onto the serial port of the cable and plug the USB connectorinto your PC USB port. It allows a simple and easy way of adding serial connectionsto your PC without having to go thru inserting a serial card and traditional portconfiguration.This USB to Serial adapter is ideal for connecting modems, cellular phones, PDAs,digital cameras, card readers and other serial devices to your computer. It providesserial connections up to 1Mbps of data transfer rate. And since USB does not requireany IRQ resource, more devices can be attached to the system without the previoushassles of device and resource conflicts.Finally, the PL-2303 USB to Serial adapter is a fully USB Specification compliantdevice and therefore supports advanced power management such as suspend andresume operations as well as remote wakeup. The PL-2303 USB Serial cable adapteris designed to work on all Windows operating systems.
USB接口控制器參考設(shè)計(jì),xilinx提供VHDL代碼 usb xilinx vhdl
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
USB接口控制器參考設(shè)計(jì),xilinx提供VHDL代碼 usb xilinx vhdl
; This program is free software; you can redistribute it and/or modify
; it under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or
; (at your option) any later version.
;
; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
; GNU General Public License for more details.
;
; You should have received a copy of the GNU General Public License
; along with this program; if not, write to the Free Software
; Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
LPC2148 USB Audio Device Example
This USB example project implements an USB Audio Device that connects via the USB interface to the PC. It may be used on the following devices:
LPC2141
LPC2142
LPC2144
LPC2146
LPC2148
An USB Audio Device (HID) does not require any special USB driver, since the USB Audio support is already built into Windows 2000 and Windows XP. Therefore USB Audio devices can be directly connected to the computer. This example project is designed to work with Keil MCB2140 Evaluation Board.
Refer to Running USBAudio for information on how to operate this example project.
This document provides guidelines for integrating a discrete high speed USB host controller onto a fourlayer
desktop motherboard. The material covered can be broken into three main categories: Board design
guidelines, EMI/ESD guidelines and front panel USB guidelines. Section 1.1 Background provides an
explanation of the routing experiments and testing performed to validate the feasibility of 480 Megabits per
second on an actual motherboard. Section 7 contains a design checklist that lists each design
recommendation described in this document. High speed USB operation is described in the USB 2.0
Specification (http://www.usb.org/developers/docs.html).
This document provides guidelines for integrating a discrete high speed USB host controller onto a fourlayer
desktop motherboard. The material covered can be broken into three main categories: Board design
guidelines, EMI/ESD guidelines and front panel USB guidelines. Section 1.1 Background provides an
explanation of the routing experiments and testing performed to validate the feasibility of 480 Megabits per
second on an actual motherboard. Section 7 contains a design checklist that lists each design
recommendation described in this document. High speed USB operation is described in the USB 2.0
Specification (http://www.usb.org/developers/docs.html).
Universal Serial Bus (USB) is a communications architecture that gives a personal
computer (PC) the ability to interconnect a variety of devices using a simple four-
wire cable. The USB is actually a two-wire serial communication link that runs at
either 1.5 or 12 megabits per second (mbs). USB protocols can configure devices
at startup or when they are plugged in at run time. These devices are broken into
various device classes. Each device class defines the common behavior and
protocols for devices that serve similar functions. Some examples of USB device
classes are shown in the following table