亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

whose

  • 計(jì)算本征值程序

    Computes all eigenvalues and eigenvectors of a real symmetric matrix a, ! which is of size n by n, stored in a physical np by np array. ! On output, elements of a above the diagonal are destroyed. ! d returns the eigenvalues of a in its first n elements. ! v is a matrix with the same logical and physical dimensions as a, ! whose columns contain, on output, the normalized eigenvectors of a. ! nrot returns the number of Jacobi rotations that were required. ! Please notice that the eigenvalues are not ordered on output. ! If the sorting is desired, the addintioal routine "eigsrt" ! can be invoked to reorder the output of jacobi.

    標(biāo)簽: 計(jì)算 程序

    上傳時(shí)間: 2016-06-04

    上傳用戶:1512313

  • C語言算法排序問題

    1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.)

    標(biāo)簽: 算法 排序

    上傳時(shí)間: 2017-04-01

    上傳用戶:糖兒水嘻嘻

  • c語言算法排序

    1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.) #include<stdio.h> #include<stdlib.h> void merge(int arr[],int low,int mid,int high){      int i,k;      int *tmp=(int*)malloc((high-low+1)*sizeof(int));      int left_low=low;      int left_high=mid;      int right_low=mid+1;      int right_high=high;      for(k=0;left_low<=left_high&&right_low<=right_high;k++)      {      if(arr[left_low]<=arr[right_low]){                                        tmp[k]=arr[left_low++];                                        }      else{           tmp[k]=arr[right_low++];           } }             if(left_low<=left_high){                              for(i=left_low;i<=left_high;i++){                                                               tmp[k++]=arr[i];                                                               }                              }       if(right_low<=right_high){                              for(i=right_low;i<=right_high;i++)                                                                tmp[k++]=arr[i];                                                        }                              for(i=0;i<high-low+1;i++)                                                       arr[low+i]=tmp[i];       } void merge_sort(int a[],int p,int r){      int q;      if(p<r){              q=(p+r)/2;              merge_sort(a,p,q);              merge_sort(a,q+1,r);              merge(a,p,q,r);              }      } int main(){     int a[8]={3,5,8,6,4,1,1};     int i,j;     int x=10;     merge_sort(a,0,6);     printf("after Merging-Sort:\n");     for(i=0;i<7;i++){                      printf("%d",a[i]);                      }     printf("\n");     i=0;j=6;     do{                                    if(a[i]+a[j]==x){                                  printf("exist");                                  break;                                  }                  if(a[i]+a[j]>x)                                 j--;                  if(a[i]+a[j]<x)                                 i++;                       }while(i<=j);     if(i>j)              printf("not exist");     system("pause");     return 0;     }

    標(biāo)簽: c語言 算法 排序

    上傳時(shí)間: 2017-04-01

    上傳用戶:糖兒水嘻嘻

  • Bi-density twin support vector machines

    In this paper we present a classifier called bi-density twin support vector machines (BDTWSVMs) for data classification. In the training stage, BDTWSVMs first compute the relative density degrees for all training points using the intra-class graph whose weights are determined by a local scaling heuristic strategy, then optimize a pair of nonparallel hyperplanes through two smaller sized support vector machine (SVM)-typed problems. In the prediction stage, BDTWSVMs assign to the class label depending on the kernel density degree-based distances from each test point to the two hyperplanes. BDTWSVMs not only inherit good properties from twin support vector machines (TWSVMs) but also give good description for data points. The experimental results on toy as well as publicly available datasets indicate that BDTWSVMs compare favorably with classical SVMs and TWSVMs in terms of generalization

    標(biāo)簽: recognition Bi-density machines support pattern vector twin for

    上傳時(shí)間: 2019-06-09

    上傳用戶:lyaiqing

  • Autonomous+Robots+Modeling,+Path+Planning

    A kinematically redundant manipulator is a serial robotic arm that has more independently driven joints than are necessary to define the desired pose (position and orientation) of its end-effector. With this definition, any planar manipulator (a manipulator whose end-effector motion is restrained in a plane) with more than three joints is a redundant manipulator. Also, a manipulator whose end-effector can accept aspatialposeisaredundant manipulator ifithas morethan sixindependently driven joints. For example, the manipulator shown in Fig. 1.1 has two 7-DOF arms mounted on a torso with three degrees of freedom (DOFs). This provides 10 DOFs for each arm. Since the end-effector of each arm can have a spatial motion with six DOFs, the arms are redundant.

    標(biāo)簽: Autonomous Modeling Planning Robots Path

    上傳時(shí)間: 2020-06-10

    上傳用戶:shancjb

  • Intelligence_-A-Modern-Approach

    Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, reasoning, learning, and action; and everything from microelectronic devices to robotic planetary explorers. The book is also big because we go into some depth. The subtitle of this book is “A Modern Approach.” The intended meaning of this rather empty phrase is that we have tried to synthesize what is now known into a common frame- work, rather than trying to explain each subfield of AI in its own historical context. We apologize to those whose subfields are, as a result, less recognizable.

    標(biāo)簽: A-Modern-Approach Intelligence

    上傳時(shí)間: 2020-06-10

    上傳用戶:shancjb

  • Digital.Image.Processing.

    This edition of Digital Image Processing is a major revision of the book. As in the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992, 2002, and 2008 editions by Gonzalez and Woods, this sixth-generation edition was prepared with students and instructors in mind. The principal objectives of the book continue to be to provide an introduction to basic concepts and methodologies applicable to digital image processing, and to develop a foundation that can be used as the basis for further study and research in this field. To achieve these objectives, we focused again on material that we believe is fundamental and whose scope of application is not limited to the solution of specialized problems. The mathematical complexity of the book remains at a level well within the grasp of college seniors and first-year graduate students who have introductory preparation in mathematical analysis, vectors, matrices, probability, statistics, linear systems, and computer programming. The book website provides tutorials to support readers needing a review of this background material

    標(biāo)簽: Processing Digital Image

    上傳時(shí)間: 2021-02-20

    上傳用戶:

主站蜘蛛池模板: 汝州市| 营山县| 光泽县| 都安| 和平县| 罗甸县| 临泽县| 焦作市| 江城| 济宁市| 城口县| 曲阳县| 英山县| 玛沁县| 磐石市| 安康市| 行唐县| 体育| 忻州市| 石台县| 莲花县| 海门市| 芜湖县| 伊金霍洛旗| 酉阳| 龙川县| 胶南市| 台前县| 来凤县| 宁乡县| 呼伦贝尔市| 永胜县| 东明县| 阿城市| 富民县| 定日县| 蒲江县| 岑溪市| 明溪县| 罗山县| 岳阳市|