亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

您現在的位置是:蟲蟲下載站 > 資源下載 > 人工智能/神經網絡 > Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form

Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form

資 源 簡 介

Boosting is a meta-learning approach that aims at combining an ensemble of weak classifiers to form a strong classifier. Adaptive Boosting (Adaboost) implements this idea as a greedy search for a linear combination of classifiers by overweighting the examples that are misclassified by each classifier. icsiboost implements Adaboost over stumps (one-level decision trees) on discrete and continuous attributes (words and real values). See http://en.wikipedia.org/wiki/AdaBoost and the papers by Y. Freund and R. Schapire for more details [1]. This approach is one of most efficient and simple to combine continuous and nominal values. Our implementation is aimed at allowing training from millions of examples by hundreds of features in a reasonable time/memory.

相 關 資 源

主站蜘蛛池模板: 祁门县| 衡水市| 徐水县| 米泉市| 张家界市| 鄢陵县| 永顺县| 清镇市| 伊宁市| 连城县| 分宜县| 安福县| 咸宁市| 古交市| 泸定县| 玉龙| 许昌市| 若羌县| 福海县| 镇平县| 杨浦区| 乌什县| 赣州市| 墨江| 潮安县| 平阳县| 苏尼特右旗| 昌宁县| 阿勒泰市| 聂荣县| 乐都县| 遵义县| 共和县| 东源县| 平凉市| 微山县| 兴安盟| 琼结县| 崇明县| 格尔木市| 永平县|