?? ekfslam.m
字號:
function EKFSLAM
close all; clear all;
global xVehicleTrue;global Map;global RTrue;global UTrue;global nSteps;
global SensorSettings;
%change these to alter sensor behaviour
SensorSettings.FieldOfView = 45;
SensorSettings.Range = 100;
%how often shall we draw?
DrawEveryNFrames = 50;
%length of experiment
nSteps = 8000;
%when to take pictures?
SnapShots = ceil(linspace(2,nSteps,25));
%size of problem
nFeatures = 40;
MapSize = 200;
Map = MapSize*rand(2,nFeatures)-MapSize/2;
UTrue = diag([0.01,0.01,1.5*pi/180]).^2;
RTrue = diag([1.1,5*pi/180]).^2;
UEst = 2.0*UTrue;
REst = 2.0*RTrue;
xVehicleTrue = [0;0;-pi/2];
%initial conditions - no map:
xEst =[xVehicleTrue];
PEst = diag([1,1,0.01]);
MappedFeatures = NaN*zeros(nFeatures,2);
%storage:
PStore = NaN*zeros(nFeatures,nSteps);
XErrStore = NaN*zeros(nFeatures,nSteps);
%initial graphics - plot true map
figure(1); hold on; grid off; axis equal;
plot(Map(1,:),Map(2,:),'g*');hold on;
set(gcf,'doublebuffer','on');
hObsLine = line([0,0],[0,0]);
set(hObsLine,'linestyle',':');
a = axis; axis(a*1.1);
xOdomLast = GetOdometry(1);
for k = 2:nSteps
%do world iteration
SimulateWorld(k);
%figure out control
xOdomNow = GetOdometry(k);
u = tcomp(tinv(xOdomLast),xOdomNow);
xOdomLast = xOdomNow;
%we'll need this lots...
xVehicle = xEst(1:3);
xMap = xEst(4:end);
%do prediction (the following is simply the result of multiplying
%out block form of jacobians)
xVehiclePred = tcomp(xVehicle,u);
PPredvv = J1(xVehicle,u)* PEst(1:3,1:3) *J1(xVehicle,u)' + J2(xVehicle,u)* UEst * J2(xVehicle,u)';
PPredvm = J1(xVehicle,u)*PEst(1:3,4:end);
PPredmm = PEst(4:end,4:end);
xPred = [xVehiclePred;xMap];
PPred = [PPredvv PPredvm;
PPredvm' PPredmm];
%observe a randomn feature
[z,iFeature] = GetObservation(k);
if(~isempty(z))
%have we seen this feature before?
if( ~isnan(MappedFeatures(iFeature,1)))
%predict observation: find out where it is in state vector
FeatureIndex = MappedFeatures(iFeature,1);
xFeature = xPred(FeatureIndex:FeatureIndex+1);
zPred = DoObservationModel(xVehicle,xFeature);
% get observation Jacobians
[jHxv,jHxf] = GetObsJacs(xVehicle,xFeature);
% fill in state jacobian
jH = zeros(2,length(xEst));
jH(:,FeatureIndex:FeatureIndex+1) = jHxf;
jH(:,1:3) = jHxv;
%do Kalman update:
Innov = z-zPred;
Innov(2) = AngleWrap(Innov(2));
S = jH*PPred*jH'+REst;
W = PPred*jH'*inv(S);
xEst = xPred+ W*Innov;
PEst = PPred-W*S*W';
%ensure P remains symmetric
PEst = 0.5*(PEst+PEst');
else
% this is a new feature add it to the map....
nStates = length(xEst);
xFeature = xVehicle(1:2)+ [z(1)*cos(z(2)+xVehicle(3));z(1)*sin(z(2)+xVehicle(3))];
xEst = [xEst;xFeature]; %augmenting state vector
[jGxv, jGz] = GetNewFeatureJacs(xVehicle,z);
M = [eye(nStates), zeros(nStates,2);% note we don't use jacobian w.r.t vehicle
jGxv zeros(2,nStates-3) , jGz];
PEst = M*blkdiag(PEst,REst)*M';
%remember this feature as being mapped we store its ID and position in the state vector
MappedFeatures(iFeature,:) = [length(xEst)-1, length(xEst)];
end;
else
xEst = xPred;
PESt = PPred;
end;
if(mod(k-2,DrawEveryNFrames)==0)
a = axis;
clf;
axis(a);hold on;
n = length(xEst);
nF = (n-3)/2;
DoVehicleGraphics(xEst(1:3),PEst(1:3,1:3),3,[0 1]);
if(~isnan(z))
h = line([xEst(1),xFeature(1)],[xEst(2),xFeature(2)]);
set(h,'linestyle',':');
end;
for(i = 1:nF)
iF = 3+2*i-1;
plot(xEst(iF),xEst(iF+1),'b*');
PlotEllipse(xEst(iF:iF+1),PEst(iF:iF+1,iF:iF+1),3);
end;
fprintf('k = %d\n',k);
drawnow;
end;
if(ismember(k,SnapShots))
iPic = find(SnapShots==k);
print(gcf,'-depsc',sprintf('EKFSLAM%d.eps',iPic));
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [z,iFeature] = GetObservation(k)
global Map;global xVehicleTrue;global RTrue;global nSteps;global SensorSettings
done = 0;
Trys = 1;
z =[];iFeature = -1;
while(~done & Trys <0.5*size(Map,2))
%choose a random feature to see from True Map
iFeature = ceil(size(Map,2)*rand(1));
z = DoObservationModel(xVehicleTrue,Map(:,iFeature))+sqrt(RTrue)*randn(2,1);
z(2) = AngleWrap(z(2));
%look forward...and only up to 40m
if(abs(pi/2-z(2))<SensorSettings.FieldOfView*pi/180 & z(1) < SensorSettings.Range)
done =1 ;
else
Trys =Trys+1;
z =[];iFeature = -1;
end;
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [z] = DoObservationModel(xVeh, xFeature)
Delta = xFeature-xVeh(1:2);
z = [norm(Delta);
atan2(Delta(2),Delta(1))-xVeh(3)];
z(2) = AngleWrap(z(2));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function SimulateWorld(k)
global xVehicleTrue;
u = GetRobotControl(k);
xVehicleTrue = tcomp(xVehicleTrue,u);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [jHxv,jHxf] = GetObsJacs(xPred, xFeature)
jHxv = zeros(2,3);jHxf = zeros(2,2);
Delta = (xFeature-xPred(1:2));
r = norm(Delta);
jHxv(1,1) = -Delta(1) / r;
jHxv(1,2) = -Delta(2) / r;
jHxv(2,1) = Delta(2) / (r^2);
jHxv(2,2) = -Delta(1) / (r^2);
jHxv(2,3) = -1;
jHxf(1:2,1:2) = -jHxv(1:2,1:2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [jGx,jGz] = GetNewFeatureJacs(Xv, z);
x = Xv(1,1);
y = Xv(2,1);
theta = Xv(3,1);
r = z(1);
bearing = z(2);
jGx = [ 1 0 -r*sin(theta + bearing);
0 1 r*cos(theta + bearing)];
jGz = [ cos(theta + bearing) -r*sin(theta + bearing);
sin(theta + bearing) r*cos(theta + bearing)];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xnow] = GetOdometry(k)
persistent LastOdom; %internal to robot low-level controller
global UTrue;
if(isempty(LastOdom))
global xVehicleTrue;
LastOdom = xVehicleTrue;
end;
u = GetRobotControl(k);
xnow =tcomp(LastOdom,u);
uNoise = sqrt(UTrue)*randn(3,1);
xnow = tcomp(xnow,uNoise);
LastOdom = xnow;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function u = GetRobotControl(k)
global nSteps;
%u = [0; 0.25 ; 0.3*pi/180*sin(3*pi*k/nSteps)];
u = [0; 0.15 ; 0.2*pi/180];
%-------- Drawing Covariance -----%
function eH = PlotEllipse(x,P,nSigma)
eH = [];
P = P(1:2,1:2); % only plot x-y part
x = x(1:2);
if(~any(diag(P)==0))
[V,D] = eig(P);
y = nSigma*[cos(0:0.1:2*pi);sin(0:0.1:2*pi)];
el = V*sqrtm(D)*y;
el = [el el(:,1)]+repmat(x,1,size(el,2)+1);
eH = line(el(1,:),el(2,:) );
end;
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -