使用說明
使用時打開此例題目錄下pic中的圖片,然后依次單擊按鈕“轉”、“1”、“2”、“3”、“4”和“5”,就可以實現精確的車牌定位。
具體步驟
1.24位真彩色->256色灰度圖。
2.預處理:中值濾波。
3.二值化:用一個初始閾值T對圖像A進行二值化得到二值化圖像B。
初始閾值T的確定方法是:選擇閾值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分別是最高、最低灰度值。
該閾值對不同牌照有一定的適應性,能夠保證背景基本被置為0,以突出牌照區域。
4.削弱背景干擾。對圖像B做簡單的相鄰像素灰度值相減,得到新的圖像G,即Gi,j=|Pi,j-Pi,j-1|i=0,1,…,439 j=0,1,…,639Gi,0=Pi,0,左邊緣直接賦值,不會影響整體效果。
5.用自定義模板進行中值濾波
區域灰度基本被賦值為0??紤]到文字是由許多短豎線組成,而背景噪聲有一大部分是孤立噪聲,用模板(1,1,1,1,1)T對G進行中值濾波,能夠得到除掉了大部分干擾的圖像C。
6.牌照搜索:利用水平投影法檢測車牌水平位置,利用垂直投影法檢測車牌垂直位置。
7.區域裁剪,截取車牌圖像。
標簽:
pic
使用說明
目錄
上傳時間:
2014-01-17
上傳用戶:851197153
動態規劃的方程大家都知道,就是
f[i,j]=min{f[i-1,j-1],f[i-1,j],f[i,j-1],f[i,j+1]}+a[i,j]
但是很多人會懷疑這道題的后效性而放棄動規做法。
本來我還想做Dijkstra,后來變了沒二十行pascal就告訴我數組越界了……(dist:array[1..1000*1001
div 2]...)
無奈之余看了xj_kidb1的題解,剛開始還覺得有問題,后來豁然開朗……
反復動規。上山容易下山難,我們可以從上往下走,最后輸出f[n][1]。
xj_kidb1的一個技巧很重要,每次令f[i][0]=f[i][i],f[i][i+1]=f[i][1](xj_kidb1的題解還寫錯了)
標簽:
動態規劃
方程
家
上傳時間:
2014-07-16
上傳用戶:libinxny