PRINCIPLE: The UVE algorithm detects and eliminates from a PLS model (including from 1 to A components) those variables that do not carry any relevant information to model Y. The criterion used to trace the un-informative variables is the reliability of the regression coefficients: c_j=mean(b_j)/std(b_j), obtained by jackknifing. The cutoff level, below which c_j is considered to be too small, indicating that the variable j should be removed, is estimated using a matrix of random variables.The predictive power of PLS models built on the retained variables only is evaluated over all 1-a dimensions =(yielding RMSECVnew).
標(biāo)簽: from eliminates PRINCIPLE algorithm
上傳時(shí)間: 2016-11-27
上傳用戶:凌云御清風(fēng)
可以把客戶端的內(nèi)容存入數(shù)據(jù)庫(kù)中,在j網(wǎng)頁(yè)中顯示出來(lái)
標(biāo)簽: 數(shù)據(jù)庫(kù)
上傳時(shí)間: 2016-11-28
上傳用戶:13215175592
猜數(shù)字遊戲, Program會(huì)判別玩家的輸入值 決定提示(NAMB) 10次機(jī)會(huì)內(nèi)猜出即為獲勝
標(biāo)簽:
上傳時(shí)間: 2013-12-15
上傳用戶:ynsnjs
function [U,center,result,w,obj_fcn]= fenlei(data) [data_n,in_n] = size(data) m= 2 % Exponent for U max_iter = 100 % Max. iteration min_impro =1e-5 % Min. improvement c=3 [center, U, obj_fcn] = fcm(data, c) for i=1:max_iter if F(U)>0.98 break else w_new=eye(in_n,in_n) center1=sum(center)/c a=center1(1)./center1 deta=center-center1(ones(c,1),:) w=sqrt(sum(deta.^2)).*a for j=1:in_n w_new(j,j)=w(j) end data1=data*w_new [center, U, obj_fcn] = fcm(data1, c) center=center./w(ones(c,1),:) obj_fcn=obj_fcn/sum(w.^2) end end display(i) result=zeros(1,data_n) U_=max(U) for i=1:data_n for j=1:c if U(j,i)==U_(i) result(i)=j continue end end end
標(biāo)簽: data function Exponent obj_fcn
上傳時(shí)間: 2013-12-18
上傳用戶:ynzfm
function [U,V,num_it]=fcm(U0,X) % MATLAB (Version 4.1) Source Code (Routine fcm was written by Richard J. % Hathaway on June 21, 1994.) The fuzzification constant % m = 2, and the stopping criterion for successive partitions is epsilon =??????. %*******Modified 9/15/04 to have epsilon = 0.00001 and fix univariate bug******** % Purpose:The function fcm attempts to find a useful clustering of the % objects represented by the object data in X using the initial partition in U0.
標(biāo)簽: fcm function Version Routine
上傳時(shí)間: 2014-11-30
上傳用戶:二驅(qū)蚊器
兩臺(tái)處理機(jī)A 和B處理n個(gè)作業(yè)。設(shè)第i個(gè)作業(yè)交給機(jī)器 A 處理時(shí)需要時(shí)間ai,若由機(jī)器B 來(lái)處理,則需要時(shí)間bi。由于各作 業(yè)的特點(diǎn)和機(jī)器的性能關(guān)系,很可能對(duì)于某些i,有ai >=bi,而對(duì)于 某些j,j!=i,有aj<bj。既不能將一個(gè)作業(yè)分開(kāi)由兩臺(tái)機(jī)器處理,也沒(méi) 有一臺(tái)機(jī)器能同時(shí)處理2 個(gè)作業(yè)。設(shè)計(jì)一個(gè)動(dòng)態(tài)規(guī)劃算法,使得這兩 臺(tái)機(jī)器處理完成這n 個(gè)作業(yè)的時(shí)間最短(從任何一臺(tái)機(jī)器開(kāi)工到最后 一臺(tái)機(jī)器停工的總時(shí)間)。研究一個(gè)實(shí)例:(a1,a2,a3,a4,a5,a6)= (2,5,7,10,5,2);(b1,b2,b3,b4,b5,b6)=(3,8,4,11,3,4)
上傳時(shí)間: 2014-01-14
上傳用戶:獨(dú)孤求源
Euler函數(shù): m = p1^r1 * p2^r2 * …… * pn^rn ai >= 1 , 1 <= i <= n Euler函數(shù): 定義:phi(m) 表示小于等于m并且與m互質(zhì)的正整數(shù)的個(gè)數(shù)。 phi(m) = p1^(r1-1)*(p1-1) * p2^(r2-1)*(p2-1) * …… * pn^(rn-1)*(pn-1) = m*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pn) = p1^(r1-1)*p2^(r2-1)* …… * pn^(rn-1)*phi(p1*p2*……*pn) 定理:若(a , m) = 1 則有 a^phi(m) = 1 (mod m) 即a^phi(m) - 1 整出m 在實(shí)際代碼中可以用類似素?cái)?shù)篩法求出 for (i = 1 i < MAXN i++) phi[i] = i for (i = 2 i < MAXN i++) if (phi[i] == i) { for (j = i j < MAXN j += i) { phi[j] /= i phi[j] *= i - 1 } } 容斥原理:定義phi(p) 為比p小的與p互素的數(shù)的個(gè)數(shù) 設(shè)n的素因子有p1, p2, p3, … pk 包含p1, p2…的個(gè)數(shù)為n/p1, n/p2… 包含p1*p2, p2*p3…的個(gè)數(shù)為n/(p1*p2)… phi(n) = n - sigm_[i = 1](n/pi) + sigm_[i!=j](n/(pi*pj)) - …… +- n/(p1*p2……pk) = n*(1 - 1/p1)*(1 - 1/p2)*……*(1 - 1/pk)
標(biāo)簽: Euler lt phi 函數(shù)
上傳時(shí)間: 2014-01-10
上傳用戶:wkchong
//Euler 函數(shù)前n項(xiàng)和 /* phi(n) 為n的Euler原函數(shù) if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i else phi(n)=phi(n/p)*(i-1) 對(duì)于約數(shù):divnum 如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數(shù)加1 否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數(shù)條件 對(duì)于素因子的冪次 e[i] 如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數(shù)加1 否則 e[i*pr[j]]=1 //pr[j]為1次 對(duì)于本題: 1. 篩素?cái)?shù)的時(shí)候首先會(huì)判斷i是否是素?cái)?shù)。 根據(jù)定義,當(dāng) x 是素?cái)?shù)時(shí) phi[x] = x-1 因此這里我們可以直接寫(xiě)上 phi[i] = i-1 2. 接著我們會(huì)看prime[j]是否是i的約數(shù) 如果是,那么根據(jù)上述推導(dǎo),我們有:phi[ i * prime[j] ] = phi[i] * prime[j] 否則 phi[ i * prime[j] ] = phi[i] * (prime[j]-1) (其實(shí)這里prime[j]-1就是phi[prime[j]],利用了歐拉函數(shù)的積性) 經(jīng)過(guò)以上改良,在篩完素?cái)?shù)后,我們就計(jì)算出了phi[]的所有值。 我們求出phi[]的前綴和 */
標(biāo)簽: phi Euler else 函數(shù)
上傳時(shí)間: 2016-12-31
上傳用戶:gyq
全面詳細(xì)介紹了VHDL,英文版,作者Peter.J.Ashenden
上傳時(shí)間: 2017-01-02
上傳用戶:zaizaibang
量測(cè)可變電阻的類比電壓值,並將10位元的良測(cè)結(jié)果轉(zhuǎn)換成ASCII編碼,並輸出到個(gè)人電腦上的終端機(jī)
標(biāo)簽:
上傳時(shí)間: 2014-01-19
上傳用戶:hzy5825468
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1