摘 要:用一種新的思路和方法,先計算低通、再計算高通濾波器的有關參數,然后組合成帶通濾波器.關鍵詞:濾波器;參數;新思路中圖分類號: TN713. 5 文獻識別碼:B 文章編號:1008 - 1666 (1999) 04 - 0089 - 03A New Consideration of the Band Filter’s CalculationGuo Wencheng( S hao Yang B usiness and Technology school , S haoyang , Hunan ,422000 )Abstract :This essay deals with a new method of calculating the band filters - first calculatingthe relevant parameters of low - pass filters ,then calculating the ones of high - pass filters.Key words :filter ; parameters ;new considercation八十年代后,信息產業得到了迅猛發展. 帶通濾波器在微波通信、廣播電視和精密儀器設備中得到了廣泛應用. 帶通濾波器性能的優劣,對提高接收機信噪比,防止鄰近信道干擾,提高設備的技術指標,有著十分重要的意義.我在長期的教學實踐中,用切比雪夫型方法設計、計算出寬帶濾波器集中參數元件的數據. 該濾波器可運用在檢測微波頻率的儀器和其他設備中. 再將其思路和計算方法介紹給大家,供參考.
上傳時間: 2014-12-28
上傳用戶:Yukiseop
自制89C51單片機實驗電路板 學習單片機離不開實驗,以往單片機的實驗往往依賴于仿真機和單片機學習系統,價格昂貴,初學者很難配備。近年來,隨著FLASH型單片機的廣泛應用,采用軟件模擬加寫片驗證成為一種經濟實用的實驗方法,以AT89C51單片機為例,其價格不足¥10RMB,而擦、寫次數可以有1000次,一塊芯片即可做上千次的實驗。目前,流行的單片機開發軟件Keil可以免費獲得用于學習的EVAL版;編程器價格并不昂貴,專門用于寫89C51類芯片的編程器價格更低廉(不足百元),而且編程器也是以后開發單片機所必備的工具;相比之下,用于實驗的電路板制作比較麻煩,用萬用板搭接,只能做些很簡單的電路,稍復雜的電路一般要用到雙面板,而業余條件下是很難自制雙面板的,而且實驗電路板主要是用于學習,學完了,也就沒有什么使用價值了,所以很多人希望能夠廉價地獲得。作者在多年單片機教學(包括從事網絡教學)的基礎上,開發了一塊有較多功能但使用單面板的單片機實驗板,適于業余愛好者自制。這塊實驗板采用89C51為主芯片,板上安裝了5位數碼管,8個發光二極管,四個按鈕開關,一個簡單的音響電路,一個用于計數實驗的振蕩器,At24CXXX類芯片插座,X5045芯片插座,RS232串行接口等。使用這塊實驗板可以進行流水燈、人機界面程序設計、音響、中斷、計數器等基本編程練習,還可以學習I2C接口芯片使用、SPI接口芯片使用、與PC機進行串行通訊等目前較為流行的技術。圖1是該實驗板的電路原理圖,從圖中可以看出,該實驗板由若干塊集成電路和一些阻容元件等組成,下面我們就分別介紹。1、發光二極管接口主芯片(U1)的P1端口接了8個發光二極管,這些發光二極管的負極接到P1端口各引腳,而正極則通過一個排電阻(標號為JP4,阻值為470毆)接到正電源端,這樣,這些發光二極管亮的條件就U1的P1口相引的引腳為低電平,即如果P1口某引腳輸出為0,相應的燈亮,如果輸出為1,相應的燈滅。例:MOV P1,#0FH該行程序將使發光二極管L1-L4熄滅,而L5-L8點亮。2、數碼管接口U1的P0口和P2口的部份引腳構成了5位LED數碼管驅動電路,這里LED數碼管采用了共陽型,共陽型數碼管的筆段(即對應abcdefgh)引腳是二極管的負極,所有二極管的正極連在一起,構成公共端,即片選端,對于這種數碼管的驅動,要求在片選端提供電流,為此,使用了PNP型三極管作為片選端的驅動,共使用5只三極管,所有三極管的發射極連在一起,接到正電源端,它們的基極則分別連到P2.0⋯P2.4,這樣,當P2.0⋯P2.4中某引腳輸出是高電平時,三極管不導通,不能給相應位的數碼管供電,該位數碼管的所有筆段都不亮,反之,如果某引腳是低電平時,三極管導通,可以給相應的數碼管供電,該位數碼管是否點亮,點亮哪些筆段,取決于這些筆段引腳是高或低電平。從圖圖1 共陽型數LED顯示器.....
上傳時間: 2013-11-14
上傳用戶:dingdingcandy
單片機應用系統抗干擾技術:第1章 電磁干擾控制基礎. 1.1 電磁干擾的基本概念1 1.1.1 噪聲與干擾1 1.1.2 電磁干擾的形成因素2 1.1.3 干擾的分類2 1.2 電磁兼容性3 1.2.1 電磁兼容性定義3 1.2.2 電磁兼容性設計3 1.2.3 電磁兼容性常用術語4 1.2.4 電磁兼容性標準6 1.3 差模干擾和共模干擾8 1.3.1 差模干擾8 1.3.2 共模干擾9 1.4 電磁耦合的等效模型9 1.4.1 集中參數模型9 1.4.2 分布參數模型10 1.4.3 電磁波輻射模型11 1.5 電磁干擾的耦合途徑14 1.5.1 傳導耦合14 1.5.2 感應耦合(近場耦合)15 .1.5.3 電磁輻射耦合(遠場耦合)15 1.6 單片機應用系統電磁干擾控制的一般方法16 第2章 數字信號耦合與傳輸機理 2.1 數字信號與電磁干擾18 2.1.1 數字信號的開關速度與頻譜18 2.1.2 開關暫態電源尖峰電流噪聲22 2.1.3 開關暫態接地反沖噪聲24 2.1.4 高速數字電路的EMI特點25 2.2 導線阻抗與線間耦合27 2.2.1 導體交直流電阻的計算27 2.2.2 導體電感量的計算29 2.2.3 導體電容量的計算31 2.2.4 電感耦合分析32 2.2.5 電容耦合分析35 2.3 信號的長線傳輸36 2.3.1 長線傳輸過程的數學描述36 2.3.2 均勻傳輸線特性40 2.3.3 傳輸線特性阻抗計算42 2.3.4 傳輸線特性阻抗的重復性與阻抗匹配44 2.4 數字信號傳輸過程中的畸變45 2.4.1 信號傳輸的入射畸變45 2.4.2 信號傳輸的反射畸變46 2.5 信號傳輸畸變的抑制措施49 2.5.1 最大傳輸線長度的計算49 2.5.2 端點的阻抗匹配50 2.6 數字信號的輻射52 2.6.1 差模輻射52 2.6.2 共模輻射55 2.6.3 差模和共模輻射比較57 第3章 常用元件的可靠性能與選擇 3.1 元件的選擇與降額設計59 3.1.1 元件的選擇準則59 3.1.2 元件的降額設計59 3.2 電阻器60 3.2.1 電阻器的等效電路60 3.2.2 電阻器的內部噪聲60 3.2.3 電阻器的溫度特性61 3.2.4 電阻器的分類與主要參數62 3.2.5 電阻器的正確選用66 3.3 電容器67 3.3.1 電容器的等效電路67 3.3.2 電容器的種類與型號68 3.3.3 電容器的標志方法70 3.3.4 電容器引腳的電感量71 3.3.5 電容器的正確選用71 3.3.6 電容器使用注意事項73 3.4 電感器73 3.4.1 電感器的等效電路74 3.4.2 電感器使用的注意事項74 3.5 數字集成電路的抗干擾性能75 3.5.1 噪聲容限與抗干擾能力75 3.5.2 施密特集成電路的噪聲容限77 3.5.3 TTL數字集成電路的抗干擾性能78 3.5.4 CMOS數字集成電路的抗干擾性能79 3.5.5 CMOS電路使用中注意事項80 3.5.6 集成門電路系列型號81 3.6 高速CMOS 54/74HC系列接口設計83 3.6.1 54/74HC 系列芯片特點83 3.6.2 74HC與TTL接口85 3.6.3 74HC與單片機接口85 3.7 元器件的裝配工藝對可靠性的影響86 第4章 電磁干擾硬件控制技術 4.1 屏蔽技術88 4.1.1 電場屏蔽88 4.1.2 磁場屏蔽89 4.1.3 電磁場屏蔽91 4.1.4 屏蔽損耗的計算92 4.1.5 屏蔽體屏蔽效能的計算99 4.1.6 屏蔽箱的設計100 4.1.7 電磁泄漏的抑制措施102 4.1.8 電纜屏蔽層的屏蔽原理108 4.1.9 屏蔽與接地113 4.1.10 屏蔽設計要點113 4.2 接地技術114 4.2.1 概述114 4.2.2 安全接地115 4.2.3 工作接地117 4.2.4 接地系統的布局119 4.2.5 接地裝置和接地電阻120 4.2.6 地環路問題121 4.2.7 浮地方式122 4.2.8 電纜屏蔽層接地123 4.3 濾波技術126 4.3.1 濾波器概述127 4.3.2 無源濾波器130 4.3.3 有源濾波器138 4.3.4 鐵氧體抗干擾磁珠143 4.3.5 貫通濾波器146 4.3.6 電纜線濾波連接器149 4.3.7 PCB板濾波器件154 4.4 隔離技術155 4.4.1 光電隔離156 4.4.2 繼電器隔離160 4.4.3 變壓器隔離 161 4.4.4 布線隔離161 4.4.5 共模扼流圈162 4.5 電路平衡結構164 4.5.1 雙絞線在平衡電路中的使用164 4.5.2 同軸電纜的平衡結構165 4.5.3 差分放大器165 4.6 雙絞線的抗干擾原理及應用166 4.6.1 雙絞線的抗干擾原理166 4.6.2 雙絞線的應用168 4.7 信號線間的串擾及抑制169 4.7.1 線間串擾分析169 4.7.2 線間串擾的抑制173 4.8 信號線的選擇與敷設174 4.8.1 信號線型式的選擇174 4.8.2 信號線截面的選擇175 4.8.3 單股導線的阻抗分析175 4.8.4 信號線的敷設176 4.9 漏電干擾的防止措施177 4.10 抑制數字信號噪聲常用硬件措施177 4.10.1 數字信號負傳輸方式178 4.10.2 提高數字信號的電壓等級178 4.10.3 數字輸入信號的RC阻容濾波179 4.10.4 提高輸入端的門限電壓181 4.10.5 輸入開關觸點抖動干擾的抑制方法181 4.10.6 提高器件的驅動能力184 4.11 靜電放電干擾及其抑制184 第5章 主機單元配置與抗干擾設計 5.1 單片機主機單元組成特點186 5.1.1 80C51最小應用系統186 5.1.2 低功耗單片機最小應用系統187 5.2 總線的可靠性設計191 5.2.1 總線驅動器191 5.2.2 總線的負載平衡192 5.2.3 總線上拉電阻的配置192 5.3 芯片配置與抗干擾193 5.3.1去耦電容配置194 5.3.2 數字輸入端的噪聲抑制194 5.3.3 數字電路不用端的處理195 5.3.4 存儲器的布線196 5.4 譯碼電路的可靠性分析197 5.4.1 過渡干擾與譯碼選通197 5.4.2 譯碼方式與抗干擾200 5.5 時鐘電路配置200 5.6 復位電路設計201 5.6.1 復位電路RC參數的選擇201 5.6.2 復位電路的可靠性與抗干擾分析202 5.6.3 I/O接口芯片的延時復位205 5.7 單片機系統的中斷保護問題205 5.7.1 80C51單片機的中斷機構205 5.7.2 常用的幾種中斷保護措施205 5.8 RAM數據掉電保護207 5.8.1 片內RAM數據保護207 5.8.2 利用雙片選的外RAM數據保護207 5.8.3 利用DS1210實現外RAM數據保護208 5.8.4 2 KB非易失性隨機存儲器DS1220AB/AD211 5.9 看門狗技術215 5.9.1 由單穩態電路實現看門狗電路216 5.9.2 利用單片機片內定時器實現軟件看門狗217 5.9.3 軟硬件結合的看門狗技術219 5.9.4 單片機內配置看門狗電路221 5.10 微處理器監控器223 5.10.1 微處理器監控器MAX703~709/813L223 5.10.2 微處理器監控器MAX791227 5.10.3 微處理器監控器MAX807231 5.10.4 微處理器監控器MAX690A/MAX692A234 5.10.5 微處理器監控器MAX691A/MAX693A238 5.10.6 帶備份電池的微處理器監控器MAX1691242 5.11 串行E2PROM X25045245 第6章 測量單元配置與抗干擾設計 6.1 概述255 6.2 模擬信號放大器256 6.2.1 集成運算放大器256 6.2.2 測量放大器組成原理260 6.2.3 單片集成測量放大器AD521263 6.2.4 單片集成測量放大器AD522265 6.2.5 單片集成測量放大器AD526266 6.2.6 單片集成測量放大器AD620270 6.2.7 單片集成測量放大器AD623274 6.2.8 單片集成測量放大器AD624276 6.2.9 單片集成測量放大器AD625278 6.2.10 單片集成測量放大器AD626281 6.3 電壓/電流變換器(V/I)283 6.3.1 V/I變換電路..283 6.3.2 集成V/I變換器XTR101284 6.3.3 集成V/I變換器XTR110289 6.3.4 集成V/I變換器AD693292 6.3.5 集成V/I變換器AD694299 6.4 電流/電壓變換器(I/V)302 6.4.1 I/V變換電路302 6.4.2 RCV420型I/V變換器303 6.5 具有放大、濾波、激勵功能的模塊2B30/2B31305 6.6 模擬信號隔離放大器313 6.6.1 隔離放大器ISO100313 6.6.2 隔離放大器ISO120316 6.6.3 隔離放大器ISO122319 6.6.4 隔離放大器ISO130323 6.6.5 隔離放大器ISO212P326 6.6.6 由兩片VFC320組成的隔離放大器329 6.6.7 由兩光耦組成的實用線性隔離放大器333 6.7 數字電位器及其應用336 6.7.1 非易失性數字電位器x9221336 6.7.2 非易失性數字電位器x9241343 6.8 傳感器供電電源的配置及抗干擾346 6.8.1 傳感器供電電源的擾動補償347 6.8.2 單片集成精密電壓芯片349 6.8.3 A/D轉換器芯片提供基準電壓350 6.9 測量單元噪聲抑制措施351 6.9.1 外部噪聲源的干擾及其抑制351 6.9.2 輸入信號串模干擾的抑制352 6.9.3 輸入信號共模干擾的抑制353 6.9.4 儀器儀表的接地噪聲355 第7章 D/A、A/D單元配置與抗干擾設計 7.1 D/A、A/D轉換器的干擾源357 7.2 D/A轉換原理及抗干擾分析358 7.2.1 T型電阻D/A轉換器359 7.2.2 基準電源精度要求361 7.2.3 D/A轉換器的尖峰干擾362 7.3 典型D/A轉換器與單片機接口363 7.3.1 并行12位D/A轉換器AD667363 7.3.2 串行12位D/A轉換器MAX5154370 7.4 D/A轉換器與單片機的光電接口電路377 7.5 A/D轉換器原理與抗干擾性能378 7.5.1 逐次比較式ADC原理378 7.5.2 余數反饋比較式ADC原理378 7.5.3 雙積分ADC原理380 7.5.4 V/F ADC原理382 7.5.5 ∑Δ式ADC原理384 7.6 典型A/D轉換器與單片機接口387 7.6.18 位并行逐次比較式MAX 118387 7.6.28 通道12位A/D轉換器MAX 197394 7.6.3 雙積分式A/D轉換器5G14433399 7.6.4 V/F轉換器AD 652在A/D轉換器中的應用403 7.7 采樣保持電路與抗干擾措施408 7.8 多路模擬開關與抗干擾措施412 7.8.1 CD4051412 7.8.2 AD7501413 7.8.3 多路開關配置與抗干擾技術413 7.9 D/A、A/D轉換器的電源、接地與布線416 7.10 精密基準電壓電路與噪聲抑制416 7.10.1 基準電壓電路原理417 7.10.2 引腳可編程精密基準電壓源AD584418 7.10.3 埋入式齊納二極管基準AD588420 7.10.4 低漂移電壓基準MAX676/MAX677/MAX678422 7.10.5 低功率低漂移電壓基準MAX873/MAX875/MAX876424 7.10.6 MC1403/MC1403A、MC1503精密電壓基準電路430 第8章 功率接口與抗干擾設計 8.1 功率驅動元件432 8.1.1 74系列功率集成電路432 8.1.2 75系列功率集成電路433 8.1.3 MOC系列光耦合過零觸發雙向晶閘管驅動器435 8.2 輸出控制功率接口電路438 8.2.1 繼電器輸出驅動接口438 8.2.2 繼電器—接觸器輸出驅動電路439 8.2.3 光電耦合器—晶閘管輸出驅動電路439 8.2.4 脈沖變壓器—晶閘管輸出電路440 8.2.5 單片機與大功率單相負載的接口電路441 8.2.6 單片機與大功率三相負載間的接口電路442 8.3 感性負載電路噪聲的抑制442 8.3.1 交直流感性負載瞬變噪聲的抑制方法442 8.3.2 晶閘管過零觸發的幾種形式445 8.3.3 利用晶閘管抑制感性負載的瞬變噪聲447 8.4 晶閘管變流裝置的干擾和抑制措施448 8.4.1 晶閘管變流裝置電氣干擾分析448 8.4.2 晶閘管變流裝置的抗干擾措施449 8.5 固態繼電器451 8.5.1 固態繼電器的原理和結構451 8.5.2 主要參數與選用452 8.5.3 交流固態繼電器的使用454 第9章 人機對話單元配置與抗干擾設計 9.1 鍵盤接口抗干擾問題456 9.2 LED顯示器的構造與特點458 9.3 LED的驅動方式459 9.3.1 采用限流電阻的驅動方式459 9.3.2 采用LM317的驅動方式460 9.3.3 串聯二極管壓降驅動方式462 9.4 典型鍵盤/顯示器接口芯片與單片機接口463 9.4.1 8位LED驅動器ICM 7218B463 9.4.2 串行LED顯示驅動器MAX 7219468 9.4.3 并行鍵盤/顯示器專用芯片8279482 9.4.4 串行鍵盤/顯示器專用芯片HD 7279A492 9.5 LED顯示接口的抗干擾措施502 9.5.1 LED靜態顯示接口的抗干擾502 9.5.2 LED動態顯示接口的抗干擾506 9.6 打印機接口與抗干擾技術508 9.6.1 并行打印機標準接口信號508 9.6.2 打印機與單片機接口電路509 9.6.3 打印機電磁干擾的防護設計510 9.6.4 提高數據傳輸可靠性的措施512 第10章 供電電源的配置與抗干擾設計 10.1 電源干擾問題概述513 10.1.1 電源干擾的類型513 10.1.2 電源干擾的耦合途徑514 10.1.3 電源的共模和差模干擾515 10.1.4 電源抗干擾的基本方法516 10.2 EMI電源濾波器517 10.2.1 實用低通電容濾波器518 10.2.2 雙繞組扼流圈的應用518 10.3 EMI濾波器模塊519 10.3.1 濾波器模塊基礎知識519 10.3.2 電源濾波器模塊521 10.3.3 防雷濾波器模塊531 10.3.4 脈沖群抑制模塊532 10.4 瞬變干擾吸收器件532 10.4.1 金屬氧化物壓敏電阻(MOV)533 10.4.2 瞬變電壓抑制器(TVS)537 10.5 電源變壓器的屏蔽與隔離552 10.6 交流電源的供電抗干擾方案553 10.6.1 交流電源配電方式553 10.6.2 交流電源抗干擾綜合方案555 10.7 供電直流側抑制干擾措施555 10.7.1 整流電路的高頻濾波555 10.7.2 串聯型直流穩壓電源配置與抗干擾556 10.7.3 集成穩壓器使用中的保護557 10.8 開關電源干擾的抑制措施559 10.8.1 開關噪聲的分類559 10.8.2 開關電源噪聲的抑制措施560 10.9 微機用不間斷電源UPS561 10.10 采用晶閘管無觸點開關消除瞬態干擾設計方案564 第11章 印制電路板的抗干擾設計 11.1 印制電路板用覆銅板566 11.1.1 覆銅板材料566 11.1.2 覆銅板分類568 11.1.3 覆銅板的標準與電性能571 11.1.4 覆銅板的主要特點和應用583 11.2 印制板布線設計基礎585 11.2.1 印制板導線的阻抗計算585 11.2.2 PCB布線結構和特性阻抗計算587 11.2.3 信號在印制板上的傳播速度589 11.3 地線和電源線的布線設計590 11.3.1 降低接地阻抗的設計590 11.3.2 減小電源線阻抗的方法591 11.4 信號線的布線原則592 11.4.1 信號傳輸線的尺寸控制592 11.4.2 線間串擾控制592 11.4.3 輻射干擾的抑制593 11.4.4 反射干擾的抑制594 11.4.5 微機自動布線注意問題594 11.5 配置去耦電容的方法594 11.5.1 電源去耦595 11.5.2 集成芯片去耦595 11.6 芯片的選用與器件布局596 11.6.1 芯片選用指南596 11.6.2 器件的布局597 11.6.3 時鐘電路的布置598 11.7 多層印制電路板599 11.7.1 多層印制板的結構與特點599 11.7.2 多層印制板的布局方案600 11.7.3 20H原則605 11.8 印制電路板的安裝和板間配線606 第12章 軟件抗干擾原理與方法 12.1 概述607 12.1.1 測控系統軟件的基本要求607 12.1.2 軟件抗干擾一般方法607 12.2 指令冗余技術608 12.2.1 NOP的使用609 12.2.2 重要指令冗余609 12.3 軟件陷阱技術609 12.3.1 軟件陷阱609 12.3.2 軟件陷阱的安排610 12.4 故障自動恢復處理程序613 12.4.1 上電標志設定614 12.4.2 RAM中數據冗余保護與糾錯616 12.4.3 軟件復位與中斷激活標志617 12.4.4 程序失控后恢復運行的方法618 12.5 數字濾波619 12.5.1 程序判斷濾波法620 12.5.2 中位值濾波法620 12.5.3 算術平均濾波法621 12.5.4 遞推平均濾波法623 12.5.5 防脈沖干擾平均值濾波法624 12.5.6 一階滯后濾波法626 12.6 干擾避開法627 12.7 開關量輸入/輸出軟件抗干擾設計629 12.7.1 開關量輸入軟件抗干擾措施629 12.7.2 開關量輸出軟件抗干擾措施629 12.8 編寫軟件的其他注意事項630 附錄 電磁兼容器件選購信息632
上傳時間: 2013-10-20
上傳用戶:xdqm
從消費類電子到工業、電信基礎架構設備,FPGA與連接外面世界的模擬及混合信號IC如影隨形,當系統中需要多個關鍵元件實現數據采集和處理功能時,您可以考慮是否選擇FPGA更實惠?如何確定哪些器件最適合您的應用,而且它們之間的協同工作能力更強呢? Xilinx FPGA模擬方案產品指南將為您解答疑惑……
上傳時間: 2013-11-04
上傳用戶:gy592333
Virtex™-5 器件包括基于第二代高級硅片組合模塊 (ASMBL™) 列架構的多平臺 FPGA 系列。集成了為獲得最佳性能、更高集成度和更低功耗設計的若干新型架構元件,Virtex-5 器件達到了比以往更高的系統性能水平。
上傳時間: 2013-10-29
上傳用戶:long14578
我采用XC4VSX35或XC4VLX25 FPGA來連接DDR2 SODIMM和元件。SODIMM內存條選用MT16HTS51264HY-667(4GB),分立器件選用8片MT47H512M8。設計目標:當客戶使用內存條時,8片分立器件不焊接;當使用直接貼片分立內存顆粒時,SODIMM內存條不安裝。請問專家:1、在設計中,先用Xilinx MIG工具生成DDR2的Core后,管腳約束文件是否還可更改?若能更改,則必須要滿足什么條件下更改?生成的約束文件中,ADDR,data之間是否能調換? 2、對DDR2數據、地址和控制線路的匹配要注意些什么?通過兩只100歐的電阻分別連接到1.8V和GND進行匹配 和 通過一只49.9歐的電阻連接到0.9V進行匹配,哪種匹配方式更好? 3、V4中,PCB LayOut時,DDR2線路阻抗單端為50歐,差分為100歐?Hyperlynx仿真時,那些參數必須要達到那些指標DDR2-667才能正常工作? 4、 若使用DDR2-667的SODIMM內存條,能否降速使用?比如降速到DDR2-400或更低頻率使用? 5、板卡上有SODIMM的插座,又有8片內存顆粒,則物理上兩部分是連在一起的,若實際使用時,只安裝內存條或只安裝8片內存顆粒,是否會造成信號完成性的影響?若有影響,如何控制? 6、SODIMM內存條(max:4GB)能否和8片分立器件(max:4GB)組合同時使用,構成一個(max:8GB)的DDR2單元?若能,則布線阻抗和FPGA的DCI如何控制?地址和控制線的TOP圖應該怎樣? 7、DDR2和FPGA(VREF pin)的參考電壓0.9V的實際工作電流有多大?工作時候,DDR2芯片是否很燙,一般如何考慮散熱? 8、由于多層板疊層的問題,可能頂層和中間層的銅箔不一樣后,中間的夾層后度不一樣時,也可能造成阻抗的不同。請教DDR2-667的SODIMM在8層板上的推進疊層?
上傳時間: 2013-10-12
上傳用戶:han_zh
概述:HHS12系列時間繼電器(以下簡稱繼電器),適用于交流,工作電壓及以下或直流工作電壓24V的控制電路中作延時元件,按預定時間接通或分斷電路。該繼電器技術性能、外形尺寸、安裝型式等均與美國公司時間繼電器相同。
上傳時間: 2014-01-05
上傳用戶:腳趾頭
能耗是制約無線傳感器網絡節點壽命的關鍵因素。無線瓦斯傳感器節點因其傳感元件的功耗遠高于無線收發模塊和微處理器,從而使其能耗問題更加突出。本文采用寬電壓低功耗單片機C61F120和工作狀態可控的直流穩壓器件ME3101,設計了電源控制電路,以控制節點處于工作/休眠交替狀態,降低節點能耗。最后對整個節點電路進行了能耗分析。結果表明,本文所給出的設計方法大大延長了節點的工作壽命。
上傳時間: 2013-11-01
上傳用戶:YUANQINHUI
電源控制基礎元件
上傳時間: 2013-11-24
上傳用戶:tianjinfan
壓力傳感器是一種常用的傳感元件,由于其自身的非線性和外界測量條件的影響,傳感器的輸出特性大都為非線性,故存在多種誤差因素。這些誤差因素通常同時存在,但以溫度的影響最為明顯,所以對傳感器的溫度補償也就尤為重要。本文結合目前應用比較普遍的各種溫度補償方法,通過編制程序,對壓力傳感器的輸出非線性作了補償。結果表明,基于最小二乘法的溫度補償方法簡單,速度快,但是精度一般,應用BP神經網絡補償的效果好,但是算法復雜。
上傳時間: 2013-12-13
上傳用戶:wyiman