隨著電力電子技術的迅速發展和推廣應用,利用計算機仿真對電力電子電路進行分析和研究得到了日益廣泛的重視。盡管目前一些仿真軟件都有比較強大的功能,可以利用它們來完成某些電力電子裝置的某些分析工作,但是由于器件模型的限制和電力電子裝置負載的復雜性,使得這些軟件并不能完成對于電力電子裝置所要進行的所有分析要求,特別是當其被用于電力電子裝置故障運行的仿真。針對上述問題,本論文在研究器件建模方法和裝置仿真方法的基礎上,運用C++語言開發了一個可專門用于電力電子裝置仿真分析的程序。 本課題首先對于各種電力電子器件進行建模。在對各種元器件特性深入研究的基礎上利用已知的電路原理和建模方法,抓住各具體電力電子器件的主要特征,建立其電路及邏輯仿真模型。由于本論文中研究的是電力電子裝置作為一個整體的特性,所以在對器件電路模型的建模過程采用高層次的電路模型,即理想開關模型和雙極性電阻模型。器件的邏輯模型則是通過皮特里網絡來實現,根據仿真的目的可建立不同精細程度的邏輯模型。因為器件邏輯模型的建模過程中采取的逐步細化的原則與面向對象程序設計中自頂而下,逐步求精的思想不謀而合,所以在仿真程序中采用C++語言對所建立的器件模型進行描述。 針對電力電子裝置的非線性,病態特性和其負載的復雜性,使用階段仿真的思想進行程序設計。確定了仿真程序的總體結構,并實現了程序的模塊化設計。利用通用的狀態變化檢測模塊和兼容性檢測模塊在程序中確定電路結構發生變化的精確時刻,它們獨立于具體的電路結構。狀態方程模塊和輸出方程模塊雖然與具體的電路結構相關,但是亦可將其設計為模塊的形式,針對不同的電路結構僅需改變模塊中對于狀態方程和輸出方程的描述。鑒于數值計算方法對于仿真結果的重要性,本論文中討論了幾種數值積分方法的特點及適用范圍,并在程序用編寫了幾種常用的算法,以供用戶選擇。通過對于瓦格納斬波器、三相全控整流橋和三相半控整流橋的仿真驗證仿真程序的正確性和實用性。
上傳時間: 2013-07-16
上傳用戶:bhqrd30
本文首先簡述了交流調速系統的發展和研究重點,介紹了異步電機調速系統的不同控制策略,詳細論述了異步電機矢量控制系統的基本原理:異步電機的數學模型和坐標變換、矢量控制的基本方程式、轉子磁鏈的觀測方法、矢量控制的系統結構等,并重點分析了空間矢量脈寬調制(SVPWM)技術的基本原理、控制算法以及在TMS320LF2407中的實現方法。 從工程實際應用出發,本文設計和開發了一套以DSP芯片TMS320LF2407為核心的有速度傳感器異步電機矢量控制系統,并給出了硬件和軟件的實現方法。該系統的功率電路采用電壓型的交-直-交變壓變頻結構,由整流電路、濾波電路及智能功率模塊IPM(PM15RSH120)逆變電路構成;控制電路以DSP芯片TMS320LF2407為核心,加上PWM信號發生電路、定子電流檢測電路、直流母線電壓檢測電路、智能功率模塊驅動電路、速度檢測電路、系統保護電路等,構成了功能齊全的異步電機全數字化矢量控制系統。 在此基礎上,本文對無速度傳感器異步電機矢量控制系統進行了有益的探索。提出了改進的電壓型轉子磁鏈估算模型,消除了電壓型轉子磁鏈估算模型中純積分環節所固有的漂移問題和積累誤差對實際系統性能的影響。在傳統型參考自適應系統基礎上,將系統中原有的自適應調節機構用一個具有在線學習能力的模糊神經網絡取代,提出一種基于模糊神經網絡的異步電機轉速估計方法,并給出了速度估計器的模糊神經網絡結構和學習算法。最后對基于模糊神經網絡轉速估計的異步電機矢量控制系統進行了仿真,結果表明該系統具有良好的性能。
上傳時間: 2013-07-02
上傳用戶:amandacool
近年來,隨著汽車工業的迅速發展,環境污染、全球變暖、能源短缺的壓力使傳統的內燃機汽車面臨前所未有的挑戰,燃料電池電動汽車已成為汽車工業新的熱點。由于燃料電池輸出特性的特殊性,輸出端必須連接DC/DC變換器,使之與驅動器配合。因此,DC/DC變換器是燃料電池電動汽車的關鍵零部件之一。 本論文主要對燃料電池電動轎車FCEV(Fuel Cell Electric Vehicle)用DC/DC變換器的主電路拓撲結構、參數設計及電磁兼容(EMC)問題進行了研究。重點針對升降壓和雙向DC/DC變換器進行分析研究。 首先介紹分析了幾種傳統升降壓直流變換器的工作原理和優缺點。針對燃料電池的特性和電動汽車對升降壓DC/DC變換器的性能指標要求,分析比較了非隔離式直流變換器的一些優點和缺點,提出了Buck-Boost級聯的升降壓主電路方案并提出相關的控制策略。然后運用模擬仿真軟件MATLAB仿真分析了控制策略的正確性。 其次分析研究了雙向DC/DC變換器的應用與設計,綜合比較現有的各種隔離與非隔離方案,結合車用要求,選擇了非隔離式的Buck-Boost拓撲。針對其工作原理、特點進行了雙向DC/DC變換器主電路與控制電路的設計研究,重點研究其過渡過程的控制策略。在利用MATLAB進行各種過渡過程的仿真分析的基礎上,選取了最佳的過渡控制方案。并利用該控制策略編制DSP控制程序,制作了小功率1kW數字控制雙向DC/DC變換器。 最后深入討論了DC/DC變換器中的電磁兼容問題。分析了DC/DC變換器主電路中存在的主要干擾源、干擾產生的機理以及干擾傳播途徑,然后以此出發,重點討論了各種抑制電磁騷擾(EMI)和電磁抗干擾(EMS)的方法及措施,給出具體方案。
上傳時間: 2013-05-24
上傳用戶:hanli8870
高速電機由于轉速高、體積小、功率密度高,在渦輪發電機、渦輪增壓器、高速加工中心、飛輪儲能、電動工具、空氣壓縮機、分子泵等許多領域得到了廣泛的應用。永磁無刷直流電機由于效率高、氣隙大、轉子結構簡單,因此特別適合高速運行。高速永磁無刷直流電機是目前國內外研究的熱點,其主要問題在于:(1)轉子機械強度和轉子動力學;(2)轉子損耗和溫升。本文針對高速永磁無刷直流電機主要問題之一的轉子渦流損耗進行了深入分析。轉子渦流損耗是由定子電流的時間和空間諧波以及定子槽開口引起的氣隙磁導變化所產生的。首先通過優化定子結構、槽開口和氣隙長度的大小來降低電流空間諧波和氣隙磁導變化所產生的轉子渦流損耗;通過合理地增加繞組電感以及采用銅屏蔽環的方法來減小電流時間諧波引起的轉子渦流損耗。其次對轉子充磁方式和轉子動力學進行了分析。最后制作了高速永磁無刷直流電機樣機和控制系統,進行了空載和負載實驗研究。論文主要工作包括: 一、采用解析計算和有限元仿真的方法研究了不同的定子結構、槽開口大小、以及氣隙長度對高速永磁無刷直流電機轉子渦流損耗的影響。對于2極3槽集中繞組、2極6槽分布疊繞組和2極6槽集中繞組的三臺電機的定子結構進行了對比,利用傅里葉變換,得到了分布于定子槽開口處的等效電流片的空間諧波分量,然后采用計及轉子集膚深度和渦流磁場影響的解析模型計算了轉子渦流損耗,通過有限元仿真對解析計算結果加以驗證。結果表明:3槽集中繞組結構的電機中含有2次、4次等偶數次空間諧波分量,該諧波分量在轉子中產生大量的渦流損耗。采用有限元仿真的方法研究了槽開口和氣隙長度對轉子渦流損耗的影響,在空載和負載狀態下的研究結果均表明:隨著槽開口的增加或者氣隙長度的減小,轉子損耗隨之增加。因此從減小高速永磁無刷電機轉子渦流損耗的角度考慮,2極6槽的定子結構優于2極3槽結構。 二、高速永磁無刷直流電機額定運行時的電流波形中含有大量的時間諧波分量,其中5次和7次時間諧波分量合成的電樞磁場以6倍轉子角速度相對轉子旋轉,11次和13次時間諧波分量合成的電樞磁場以12倍轉子角速度相對轉子旋轉,這些諧波分量與轉子異步,在轉子保護環、永磁體和轉軸中產生大量的渦流損耗,是轉子渦流損耗的主要部分。首先研究了永磁體分塊對轉子渦流損耗的影響,分析表明:永磁體的分塊數和透入深度有關,對于本文設計的高速永磁無刷直流電機,當永磁體分塊數大于12時,永磁體分塊才能有效地減小永磁體中的渦流損耗;反之,永磁體分塊會使永磁體中的渦流損耗增加。為了提高轉子的機械強度,在永磁體表面通常包裹一層高強度的非磁性材料如鈦合金或者碳素纖維等。分析了不同電導率的包裹材料對轉子渦流損耗的影響。然后利用渦流磁場的屏蔽作用,在轉子保護環和永磁體之間增加一層電導率高的銅環。有限元分析表明:盡管銅環中會產生渦流損耗,但正是由于銅環良好的導電性,其產生的渦流磁場抵消了氣隙磁場的諧波分量,使永磁體、轉軸以及保護環中的損耗顯著下降,整體上降低了轉子渦流損耗。分析了不同的銅環厚度對轉子渦流損耗的影響,研究表明轉子各部分的渦流損耗隨著銅屏蔽環厚度的增加而減小,當銅環的厚度達到6次時間諧波的透入深度時,轉子損耗減小到最小。 三、對于給定的電機尺寸,設計了兩臺電感值不同的高速永磁無刷直流電機,通過研究表明:電感越大,電流變化越平緩,電流的諧波分量越低,轉子渦流損耗越小,因此通過合理地增加繞組電感能有效的降低轉子渦流損耗。 四、研究了高速永磁無刷直流電機的電磁設計和轉子動力學問題。對比分析了平行充磁和徑向充磁對高速永磁無刷直流電機性能的影響,結果表明:平行充磁優于徑向充磁。設計并制作了兩種不同結構的轉子:單端式軸承支撐結構和兩端式軸承支撐結構。對兩種結構進行了轉子動力學分析,實驗研究表明:由于轉子設計不合理,單端式軸承支撐結構的轉子轉速達到40,000rpm以上時,保護環和定子齒部發生了摩擦,破壞了轉子動平衡,導致電機運行失敗,而兩端式軸承支撐結構的轉子成功運行到100,000rpm以上。 五、最后制作了平行充磁的高速永磁無刷直流電機樣機和控制系統,進行了空載和負載實驗研究。對比研究了PWM電流調制和銅屏蔽環對轉子損耗的影響,研究表明:銅屏蔽環能有效的降低轉子渦流損耗,使轉子損耗減小到不加銅屏蔽環時的1/2;斬波控制會引入高頻電流諧波分量,使得轉子渦流損耗增加。通過計算繞組反電勢系數的方法,得到了不同控制方式下帶銅屏蔽環和不帶銅屏蔽環轉子永磁體溫度。采用簡化的暫態溫度場有限元模型分析了轉子溫升,有限元分析和實驗計算結果基本吻合,驗證了銅屏蔽環的有效性。
上傳時間: 2013-05-18
上傳用戶:zl123!@#
在伺服系統中,為了實現高精度的控制,往往需要實時地檢測出電動機轉子的位置。用來檢測電動機轉子位置的角度傳感器主要有光電編碼器和旋轉變壓器。光電編碼器雖然能夠達到很高的精度,但是它的抗干擾性差,不宜應用在條件惡劣的場合中;相比較而言,旋轉變壓器(簡稱旋變)由于結構簡單,堅固耐用,抗干擾性強,能夠應用在各種條件惡劣的場合中,所以獲得了越來越廣泛的應用。 本文采用的旋變樣機是一種新型的磁阻式旋轉變壓器。分析了它的定轉子結構、定子繞組的連接方式以及轉子形狀的優化;并在此基礎上,推導出了它的正余弦輸出反電勢的表達式;最后在電磁場分析軟件Ansoft中,以樣機為原型建立了仿真模型,分析了它內部的電磁場分布以及正余弦輸出反電勢的波形。 其次,本文設計了一種以DSP為核心的R2D電路系統。它以振蕩電路產生的正弦波電壓信號作為旋變的激勵信號,加上相關的外圍電路,構成了旋轉變壓器一數字轉換器,解算出了旋變的軸角θ;并在此基礎上,分析了產生角度解算誤差的各種因素,同時計算出了旋變的轉速n。 最后,在上述解算方案的基礎上,本文又給出了第二種解算方案,即:DSP產生的方波經過濾波之后作為旋變的激勵信號,解算出了旋變的軸角θ;然后比較了這兩種解算方案的優缺點,重點分析了激勵信號中的諧波分量對正余弦輸出反電勢以及角度解算的影響。
上傳時間: 2013-04-24
上傳用戶:pioneer_lvbo
自制串口下載器,欺騙ICCAVR,取代STK500
上傳時間: 2013-04-24
上傳用戶:lw852826
新型8 通道24 位模數轉換器ADS1216 及其應用
上傳時間: 2013-04-24
上傳用戶:lmeeworm
永磁同步電動機交流伺服系統作為交流伺服系統的主流,在工業生產自動化領域中應用廣泛、前景廣闊。永磁同步伺服電動機作為伺服系統的執行機構,其性能的優劣在很大程度上決定了整個伺服系統的性能。因此,精心設計性能優異的永磁同步伺服電動機具有重要的理論意義和應用價值。本課題系統研究了永磁同步伺服電動機的本體設計,包括設計方法、性能計算、有限元分析、參數計算、控制仿真、實驗測試等。 首先,綜述和分析了永磁同步伺服電動機的研究現狀、存在問題和發展前景,研究了永磁同步伺服電動機的設計特點和方法。開發了永磁同步伺服電動機的電磁計算程序,結合有限元計算數值的校正,完成對樣機的性能計算,計算結果較為準確。 接著,深入分析永磁同步伺服電動機的氣隙磁場,得到充磁方式、極弧系數、不均勻氣隙、永磁體厚度等因素對氣隙磁場的影響,繪制了各因素對氣隙磁場基波和諧波總量影響的曲線,通過優化設計,得到了明顯改善的正弦氣隙磁場。并拓展研究總結了不同永磁體形狀和尺寸對永磁直流電動機在換向和性能上的影響,取得有實用價值的研究成果。 然后,基于Ansoft、MagNet電磁分析軟件建立了永磁同步伺服電動機的有限元分析模型,深入研究了電機的反電勢波形、穩態運行性能和齒槽轉矩,計算了直、交軸同步電抗等重要參數。建立了永磁同步伺服電動機Id=0控制的Matlab/simulink仿真模型,并進行了仿真研究。 最后,對永磁同步伺服電動機進行了實驗測試和分析,包括反電勢波形與磁場波形測試、性能曲線測試、直交軸同步電抗的測量。對測試結果與設計結果進行了比較分析,驗證了設計方法的正確性。
上傳時間: 2013-08-04
上傳用戶:qazwsxedc
近年來,由于能源危機和環境污染,世界各國均在投巨資發展燃料電池汽車。雙向DC/DC變換器作為燃料電池汽車的中重要部件,需要隨著行駛狀態的改變,頻繁地切換其工作狀態,其動態性能好壞,直接決定汽車動力系統的響應速度。本文主要致力于對DC/DC變換器在不同控制策略下的動態性能進行研究,并在保證其穩態性能的前提下提高系統動態性能。 本文首先研究了線性控制策略下DC/DC變換器的動態性能。介紹了閉環控制系統在頻域和時域的動態性能指標以及二者之間的關系。當系統受到外部干擾較小時,采用頻域分析方法,對Buck和Boost變換器進行了小信號建模,并對其在不同線性補償網絡控制作用下的動態性能進行對比分析。當系統受到較大干擾時,采用時域分析方法,文中介紹了DC/DC變換器大信號建模方法,并對PID參數在工程上整定方法加以分析。 DC/DC變換器是一非線性系統,應用線性控制策略不可避免地存在一定局限性—動態性能和穩態性能之間的矛盾。針對這一問題,引入了模糊—PI控制,將其應用于DC/DC變換器,以在保持系統穩態性能不變的前提下,提高其動態性能。以Buck DC/DC變換器為例,詳細介紹了模糊-PI控制器的設計過程,并對設計的閉環控制系統用MATLAB進行建模與仿真。最后,通過實驗對比驗證了模糊—PI控制的有效性。 和線性控制策略相比,模糊—PI控制在一定程度上提高了系統的動態性能,但效果有限。本文引入了另一種非線性控制策略——滑模控制策略?;?刂撇呗允悄壳皠討B性能最好的控制策略之一,可以極佳地發揮系統的硬件潛能。 本文首先介紹了滑??刂葡嚓P知識,推導了其應用于Buck和Boost變換器的理論基礎。設計出針對不同被控對象和工作狀態的控制策略,對每種控制策略通過仿真分析驗證其有效性。就滑??刂拼嬖诘撵o差問題、抖振問題和變頻問題均提出了行之有效的解決方案??焖夙憫匦?/p>
上傳時間: 2013-08-01
上傳用戶:yw14205
對供電系統進行適當的無功補償,可以穩定電網電壓,提高功率因數,提高設備利用率,減小網絡有功功率損耗,提高輸電能力,平衡三相功率,為系統提供電壓支撐,提高系統運行安全性。鋼鐵企業一直就是用電大戶,具有容量大、負荷沖擊大、起制動頻繁、快速性、工作連續性和自動化程度高等特點,存在功率因數低、電壓波動等問題。研究鋼鐵企業的無功補償,對企業提高供電可靠性,節能減排,降低損耗,提高用電設備效率,保證產品質量有著非常重要的意義。 本文選用目前工程上應用最為廣泛的動態補償裝置靜止無功功率補償器,即SVC對鋼鐵企業負荷進行無功補償??疾炝塑堜撈髽I的負荷特點,對比了各種補償裝置的優缺點,在此基礎上提出了FC—TCR型SVC做為鋼鐵企業的無功補償裝置。 本文根據特定的現場參數,提出了FC—TCR型SVC裝置的設計框架,建立了潮流計算和SVC裝置的數學模型,給出了含有SVC補償裝置的電力系統潮流計算的計算方法,計算了SVC裝置的FC和TCR各支路參數,對一次設備進行選型,最后提出了一套完整的SVC系統設計方案。仿真結果表明,采用本方案的SVC系統有效提高了供電系統的功率因數,抑制了電壓波動,表明方案設計中的支路配置,參數設置和設備選型是合理的。 從基于瞬時無功功率理論的補償裝置觸發角度的算法出發,研究了SVC裝置動態補償的實現方法。本文還提出了動態補償SVC監控系統和晶閘管觸發系統的硬件實現。 為了驗證SVC系統設計的合理性,搭建了SVC的模擬試驗平臺,對一次系統,監控系統,光電觸發系統進行了聯合調試,調試結果達到了設計預期目標。
上傳時間: 2013-06-23
上傳用戶:xiaohuanhuan