CCD( Charge Coupled Device )全稱為電荷耦合器件,是70 年代發展起來的新型半導體器件。它是在MOS集成電路技術基礎上發展起來的,為半導體技術應用開拓了新的領域。它具有光電轉換、信息存貯和傳輸等功能,具有集成度高、功耗小、結構簡單、壽命長、性能穩定等優點,故在固體圖像傳感器、信息存貯和處理等方面得到了廣泛的應用。CCD圖像傳感器能實現信息的獲取、轉換和視覺功能的擴展,能給出直觀、真實、多層次的內容豐富的可視圖像信息,被廣泛應用于軍事、天文、醫療、廣播、電視、傳真通信以及工業檢測和自動控制系統。實驗室用的數碼相機、光學多道分析器等儀器,都用了CCD作圖象探測元件。一個完整的CCD器件由光敏單元、轉移柵、移位寄存器及一些輔助輸入、輸出電路組成。CCD工作時,在設定的積分時間內由光敏單元對光信號進行取樣,將光的強弱轉換為各光敏單元的電荷多少。取樣結束后各光敏元電荷由轉移柵轉移到移位寄存器的相應單元中。移位寄存器在驅動時鐘的作用下,將信號電荷順次轉移到輸出端。將輸出信號接到示波器、圖象顯示器或其它信號存儲、處理設備中,就可對信號再現或進行存儲處理。由于CCD光敏元可做得很小(約10um),所以它的圖象分辨率很高。
上傳時間: 2022-06-23
上傳用戶:
CCD作為一種光電轉換器件,由于其具有精度高、分辨率好、性能穩定等特點,目前廣泛應用于圖像傳感和非接觸式測量領域。在CCD應用技術中,最關鍵的兩個問題是CCD驅動時序的產生和CCD輸出信號的處理。對于CCD輸出信號,可以根據CCD像素頻率和輸出信號幅值來選擇合適的片外或片內模數轉換器;而對于CCD驅動時序,則有幾類常用的產生方法。1常用的CCD驅動時序產生方法CCD廠家眾多,型號各異,其驅動時序的產生方法也多種多樣,一般有以下4種:0)數字電路驅動方法這種方法是利用數字門電路及時序電路直接構建驅動時序電路,其核心是一個時鐘發生器和幾路時鐘分頻器,各分頻器對同一時鐘進行分頻以產生所需的各路脈沖。該方法的特點是可以獲得穩定的高速驅動脈沖,但邏輯設計和調試比較復雜,所用集成芯片較多,無法在線調整驅動頻率。
上傳時間: 2022-06-23
上傳用戶:
高性能低成本的圖像采集和處理系統在自動測量、設備檢測、安全監控等工業測控領域需求巨大。相比于CMOS圖像傳感器,CCD圖像傳感器在靈敏度、分辨率、噪聲控制以及技術成熟度等方面具有明顯優勢。發達國家對于基于CCD圖像傳感器的高性能圖像采集和處理系統的開發已經具有了一定的經驗和成功先例,而在我國,相關的技術開發還比較薄弱。因此,通過對基于CCD圖像傳感器的高性能圖像采集和處理系統進行研究和開發,迅速掌握核心技術,積累必要的技術儲備和經驗,對滿足我國在相關領域的需求有著重要意義。本文研究了CCD圖像傳感器的發展歷程、結構及工作原理、性能特點,并與CMOS圖像傳感器進行了比較。詳細分析了SONY公司的大面陣CCD圖像傳感器,并以此器件為核心完成了圖像采集和處理系統的設計。選用CYPRESS公司的LC4256V型CPLD(Complex Programmable Logic Device)芯片和TI公司的MSP430F149型MCU(Micro Controller Unit)芯片共同構成系統的核心處理平臺。以CPLD為設計載體,使用Verilog硬件描述語言實現了驅動時序設計,完成了對CCD圖像傳感器的控制。對CYPRESS公司的CY7C68013型USB器件進行了固件程序、驅動程序和應用程序開發,實現了高速數據傳輸。硬件上采用了模塊化設計,并充分考慮了抗干擾措施。實際測試表明,上述系統工作穩定,具有良好的靈活性和可擴展性。
上傳時間: 2022-06-23
上傳用戶:kingwide
機械工業是國民經濟的裝備部門,而標準化和計量測試是機械工業發展的基礎和先決條件。在機械制造中,精密加工必須靠精密的測量手段來保證,加工精度的提供與計量技術的發展水平密切相關。測量與控制是促進科技發展的一個重要因素。CCD(Charge Coupled Device),電荷耦合器件,是70年代初發展起來的新型半導體器件,其設計思想是由美國貝爾實驗室的Boyer與Smith于70年代提出]。二十多年來,CCD的研究取得了驚人的進展,特別是在傳感器應用方面發展迅速,已成為現代光電子學與現代測試技術中最活躍、最富有成果的新興領域之一。由于CCD具有自掃描、高分辨率、高靈敏度、重量輕、體積小、像素位置準確、耗電少、壽命長、可靠性好、信號處理方便、易于與計算機配合等優點,致使CCD光電尺寸測量的使用范圍和特性比現有的機械式、光學式、電磁式量儀優越得多。特別值得注意的是CCD尺寸測量技術是一種非常有效的非接觸檢測方法,它使加工、檢測和控制過程融為一體成為可能。利用CCD作為光敏感器件的激光三角法測量技術在非接觸尺寸、位置測量中得到了廣泛應用。它將激光束投射到被測物面所形成的漫反射光斑作為傳感信號,用透鏡成像原理將收集到的漫反射光匯集到CCD上形成像點,當入射光斑隨被測物面移動時,成像點在CCD上作相應移動,根據象移大小和傳感器的結構參數可以確定被測物面的位移量,若在物體兩邊同時測量就可以得到物體的厚度。
上傳時間: 2022-06-23
上傳用戶:xsr1983
激光雷達是激光技術和雷達技術相結合的產物,其工作原理與傳統雷達基本相同,都是通過雷達發射信號,由接收系統收集從目標返回的信號,并對其進行觀察和處理來發現目標、測量目標的坐標和運動參數等1-7].由于激光雷達發射的激光頻率較微波高幾個數量級,故頻率的量變使得激光雷達技術產生了質的變革.因此,激光雷達在精度、分辨率、抗干擾性和某些特定參數測量能力方面都是普通雷達所無法比擬的.雷達系統的核心部分是三維成像激光雷達信號處理系統,其處理的數據量大、實時性要求高,因此,對信號處理系統的設計要求很高,由于FPGA運算速度快、實時性好,在數字信號處理方面有明顯的優勢,故設計一種基于FPGA和MCU的三維成像激光雷達信號處理系統,具有重要的現實意義.1成像激光雷達原理與系統方案設計激光雷達系統由雷達發射系統、接收系統、控制系統和信號處理系統等部分構成,其原理框圖見圖1.發射系統與接收系統用于發射一定的激光波束并接收目標的反射光信號,同時將光信號轉化為電信號,包括激光器、光電探測器、發射光學系統和接收光學系統幾部分;信號處理系統是將光電探測器接收到的信號進行放大,并從信號中提取有用信息,然后將這種信息轉化為所需要的信號形式,包括前置放大、信號處理和數據采集等部分;處理與顯示系統是整個成像系統的終端部分,其功能是將采集到的數據形成圖像并顯示.
上傳時間: 2022-06-24
上傳用戶:
最近入手了Pandaboard的高清攝像頭子板一塊,順便學習了MIPICSI2接口,給各位網友分享一下。這個高清攝像頭采用ov5640芯片,500萬像素,支持自動聚焦,這也是手機和平板里面用得比較多的一種cmos傳感芯片。OV5640同時支持并向和串行數據傳輸,當然串行傳輸(也就是MIPI方式)速度更快,能夠支持更高的分辨率,一般手機里300萬或者500萬像素的攝像頭一般都是MIPI接口。不妨再多提一下MIPI標準,MIPI是做移動應用處理器的幾家巨頭公司成立的聯盟,旨在定義移動應用處理器的接口標準,其全稱為“Mobile Industry Processor Interface”。現在用的比較多是MIPI框架中的攝像頭標準和顯示標準,即MIPICSI和MIPI DSI。CSI代表Camera Serial Interface,而DSI代表Display Serial Interface。現在CSI已經升級到CSI2.0版本,即MIPICSI2接口。本文所提到的Pandaboard 高清攝像頭使用的就是MIPICSI2接口。先貼一個Pandaboard安裝好攝像頭子板的圖片:
上傳時間: 2022-06-24
上傳用戶:jason_vip1
1引言有要發光二極管(OLED)具有低驅動電壓、寬溫工作、主動發光、響應速度快和視角寬等優點],其作為全彩顯示器件,與LCD相比,具有更簡單的工藝和更低的成本。近年,單色和局域色的OLED顯示屏已有較多報道~1,并推出了全彩OLED顯示屏~9]。本文研制了尺寸為1.9、分辨率為128(×3)×160的全彩OLED屏。在目前報道的同等或以下尺寸的采用無源矩陣(PM)驅動的全彩OLED屏中,該屏的分辨率處于較高水平。2全彩OLED屏2.1全彩技術的實現圖1是5種實現全彩OLED顯示屏技術的示意圖。本文采用(a)所示的平面結構式,每個全彩像素包括紅、綠和藍3個子像素,利用空間混色實現彩色。這種技術的難點是在制作全彩OLED時,需要將紅、綠和藍OLED的發光層(EML)材料分隔開01。屏的最高分辨率不僅受限于機械掩模制作的公差,還受限于在器件制作工藝過程中機械掩模與ITO基板玻璃的對準誤差。2.2P-OLED屏的驅動技術OLFD屬于電流型器件,其發光亮度與驅動電流成正比,故OLED均采用恒流源驅動。由于OLED自身較高的寄生電容(20~30pF/pixel)和ITO電極引線的電阻(幾~幾109/口形成的電壓降,對恒流源的性能提出了較高的要求,例如可提供高達~30V的電壓。為了實現多灰度顯示,電流必須可程控。lare公司為了精確控制每個OLED子像素的發光亮度,提出了預充電方案]。根據有無開關和驅動薄膜晶體管的存在,可將矩陣式OLED的驅動可分為P10l和有源矩陣AM112種。PM驅動的顯示器件由于制作工藝比AM要簡單得多,且成本低廉,故在小尺寸的顯示器件上得到了廣泛應用。PM驅動電路如圖2所示。
標簽: oled
上傳時間: 2022-06-24
上傳用戶:
MIPI D-PHY v1.2相對于之前介紹的v1.1變化主要是速率從1.5Gbps/Lane提升到了2.5Gbps/Lane,可以支持更高的分辨率顯示,同時新增了Calibration功能,用于HS-Deskew。
上傳時間: 2022-06-27
上傳用戶:slq1234567890
淘寶上一款LCD屏的資料,店家的度盤鏈接經常掛,就傳到這里來。內容上就是SPI驅動例程和屏幕的一些說明,例程還是挺全的,32F1和F4系列的都有,51和arduino的也有,改改分辨率也可用于其他ST7735芯片驅動的LCD屏。
上傳時間: 2022-06-28
上傳用戶:
1設計任務與要求1.1基本功能1)能夠測量正弦波、方波、三角波等交流信號的頻率;2)測量信號的頻率范圍為1HZ-9999KHZ,分辨率為1HZ:3)測量結果直接用十進制數值,通過四個數碼管顯示;4)可手動測量,手動清零;5)具有高精度、迅速測量、讀數方便等優點。1.2擴展功能1)具有不同可測頻率范圍的多個檔位;2)有超量程警告,當測量信號頻率超過所選檔位的量程時,頻率計發出警報。2設計原理脈沖信號的頻率就是在單位時間(1s)里產生的脈沖個數,若在一定時間間隔tw內測得這個周期信號的重復變化次數為N,則其頻率可表示為:豆f-N/T(1)數字頻率計的總體框圖如圖1所示:數字頻率計由四大基本電路組成:整形系統,單穩態觸發器構成的閘門電路,可控的計數系統、鎖存譯碼顯示電路、超量程報警系統。經過放大衰減后的被測信號(包括正弦波,三角波,方波等周期信號)經過整形電路,變成峰值為3~5V(與TTL兼容)的方波信號Vx,送入計數器的時鐘脈沖端。當門控信號到來后,閘門電路開啟,時間為Ti,計數器實現計數功能,Ti時間過后閘門關閉,計數停止,鎖存器使能端置零,計數結果被鎖存,通過數碼管可以方便讀出被測信號頻率。圖2為數字頻率計的波形圖:
上傳時間: 2022-07-01
上傳用戶: