亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

利用匯編語言實現DES加密算法

  • 利用80C31單片機串行口實現多個LED顯示的一種簡單方法

    摘要:介紹利用80C31單片機串行口、廉價的74HC164和74HC244集成塊實現多個LED顯示的一種簡單方法,利用該方法設計的多路LED顯示系統具有硬件結構簡單、軟件編程容易和價格低廉的特點。關鍵詞:單片機  串行口  LED  顯示  80C31

    標簽: 80C31 LED 單片機 串行口

    上傳時間: 2013-12-31

    上傳用戶:時代將軍

  • 利用STC89C55RD+單片機實現無線LED點陣顯示系統

    摘要:利用STC89C55RD+的在應用可編程功能和射頻芯片nRF401,設計了一個無線數據通信方式下的LED點陣顯示系統。該系統采用了上一下位機的結構構建,利用無線收發模塊實現顯示信息及控制命令的發送,并且充分利用了該單片機大容量的數據Flash區,通過在應用可編程功能實現多條信息的實時發布、擦除和修改。關鍵詞:單片機,在應用可編程,無線,點陣

    標簽: STC LED 89 55

    上傳時間: 2013-11-03

    上傳用戶:zjwangyichao

  • 利用單片機技術實現對傳感器實驗儀的改造

    針對實驗室傳感器系統實驗儀采用RS一232通信方式,連續測量時不能實時顯示動態過程的問題,提出了利用單片機系統實現數據采集、以USBIO0作為通信模塊的改造方案,提高了單片機與Pc機的數據傳送速率,實現了被測信號的連續采集、動態顯示、數據存儲和歷史曲線調用功能。

    標簽: 用單片機 技術實現 傳感器 實驗儀

    上傳時間: 2014-12-27

    上傳用戶:peterli123456

  • 利用LPC微控制器進行低成本的模/數轉換 AN10187

    利用LPC微控制器進行低成本的模/數轉換  AN10187 datasheet 要想利用數字計算機來處理連續變化的數據,就必須將模擬值轉換成數字量。模/數轉換器(ADC)根據不同的原理工作,其性能、效果和成本都會發生變化。某些微控制器具有能夠提供10位及更高分辨率的集成ADC,但所需的芯片面積和為了保證要求精度而進行的全面試驗增加了此類裝置的成本。

    標簽: 10187 LPC AN 微控制器

    上傳時間: 2013-12-26

    上傳用戶:清山綠水

  • MSP430系列flash型超低功耗16位單片機

    MSP430系列flash型超低功耗16位單片機MSP430系列單片機在超低功耗和功能集成等方面有明顯的特點。該系列單片機自問世以來,頗受用戶關注。在2000年該系列單片機又出現了幾個FLASH型的成員,它們除了仍然具備適合應用在自動信號采集系統、電池供電便攜式裝置、超長時間連續工作的設備等領域的特點外,更具有開發方便、可以現場編程等優點。這些技術特點正是應用工程師特別感興趣的。《MSP430系列FLASH型超低功耗16位單片機》對該系列單片機的FLASH型成員的原理、結構、內部各功能模塊及開發方法與工具作詳細介紹。MSP430系列FLASH型超低功耗16位單片機 目錄  第1章 引 論1.1 MSP430系列單片機1.2 MSP430F11x系列1.3 MSP430F11x1系列1.4 MSP430F13x系列1.5 MSP430F14x系列第2章 結構概述2.1 引 言2.2 CPU2.3 程序存儲器2.4 數據存儲器2.5 運行控制2.6 外圍模塊2.7 振蕩器與時鐘發生器第3章 系統復位、中斷及工作模式3.1 系統復位和初始化3.1.1 引 言3.1.2 系統復位后的設備初始化3.2 中斷系統結構3.3 MSP430 中斷優先級3.3.1 中斷操作--復位/NMI3.3.2 中斷操作--振蕩器失效控制3.4 中斷處理 3.4.1 SFR中的中斷控制位3.4.2 中斷向量地址3.4.3 外部中斷3.5 工作模式3.5.1 低功耗模式0、1(LPM0和LPM1)3.5.2 低功耗模式2、3(LPM2和LPM3)3.5.3 低功耗模式4(LPM4)22 3.6 低功耗應用的要點23第4章 存儲空間4.1 引 言4.2 存儲器中的數據4.3 片內ROM組織4.3.1 ROM 表的處理4.3.2 計算分支跳轉和子程序調用4.4 RAM 和外圍模塊組織4.4.1 RAM4.4.2 外圍模塊--地址定位4.4.3 外圍模塊--SFR4.5 FLASH存儲器4.5.1 FLASH存儲器的組織4.5.2 FALSH存儲器的數據結構4.5.3 FLASH存儲器的控制寄存器4.5.4 FLASH存儲器的安全鍵值與中斷4.5.5 經JTAG接口訪問FLASH存儲器39第5章 16位CPU5.1 CPU寄存器5.1.1 程序計數器PC5.1.2 系統堆棧指針SP5.1.3 狀態寄存器SR5.1.4 常數發生寄存器CG1和CG25.2 尋址模式5.2.1 寄存器模式5.2.2 變址模式5.2.3 符號模式5.2.4 絕對模式5.2.5 間接模式5.2.6 間接增量模式5.2.7 立即模式5.2.8 指令的時鐘周期與長度5.3 指令組概述5.3.1 雙操作數指令5.3.2 單操作數指令5.3.3 條件跳轉5.3.4 模擬指令的簡短格式5.3.5 其他指令第6章 硬件乘法器6.1 硬件乘法器6.2 硬件乘法器操作6.2.1 無符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.2 有符號數相乘(16位×16位、16位×8位、8位×16位、8位×8位)6.2.3 無符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.2.4 有符號數乘加(16位×16位、16位×8位、8位×16位、8位×8位)6.3 硬件乘法器寄存器6.4 硬件乘法器的軟件限制6.4.1 尋址模式6.4.2 中斷程序6.4.3 MACS第7章 基礎時鐘模塊7.1 基礎時鐘模塊7.2 LFXT1與XT27.2.1 LFXT1振蕩器7.2.2 XT2振蕩器7.2.3 振蕩器失效檢測7.2.4 XT振蕩器失效時的DCO7.3 DCO振蕩器7.3.1 DCO振蕩器的特性7.3.2 DCO調整器7.4 時鐘與運行模式7.4.1 由PUC啟動7.4.2 基礎時鐘調整7.4.3 用于低功耗的基礎時鐘特性7.4.4 選擇晶振產生MCLK7.4.5 時鐘信號的同步7.5 基礎時鐘模塊控制寄存器7.5.1 DCO時鐘頻率控制7.5.2 振蕩器與時鐘控制寄存器7.5.3 SFR控制位第8章 輸入輸出端口8.1 引 言8.2 端口P1、P28.2.1 P1、P2的控制寄存器8.2.2 P1、P2的原理8.2.3 P1、P2的中斷控制功能8.3 端口P3、P4、P5和P68.3.1 端口P3、P4、P5和P6的控制寄存器8.3.2 端口P3、P4、P5和P6的端口邏輯第9章 看門狗定時器WDT9.1 看門狗定時器9.2 WDT寄存器9.3 WDT中斷控制功能9.4 WDT操作第10章 16位定時器Timer_A10.1 引 言10.2 Timer_A的操作10.2.1 定時器模式控制10.2.2 時鐘源選擇和分頻10.2.3 定時器啟動10.3 定時器模式10.3.1 停止模式10.3.2 增計數模式10.3.3 連續模式10.3.4 增/減計數模式10.4 捕獲/比較模塊10.4.1 捕獲模式10.4.2 比較模式10.5 輸出單元10.5.1 輸出模式10.5.2 輸出控制模塊10.5.3 輸出舉例10.6 Timer_A的寄存器10.6.1 Timer_A控制寄存器TACTL10.6.2 Timer_A寄存器TAR10.6.3 捕獲/比較控制寄存器CCTLx10.6.4 Timer_A中斷向量寄存器10.7 Timer_A的UART應用 第11章 16位定時器Timer_B11.1 引 言11.2 Timer_B的操作11.2.1 定時器長度11.2.2 定時器模式控制11.2.3 時鐘源選擇和分頻11.2.4 定時器啟動11.3 定時器模式11.3.1 停止模式11.3.2 增計數模式11.3.3 連續模式11.3.4 增/減計數模式11.4 捕獲/比較模塊11.4.1 捕獲模式11.4.2 比較模式11.5 輸出單元11.5.1 輸出模式11.5.2 輸出控制模塊11.5.3 輸出舉例11.6 Timer_B的寄存器11.6.1 Timer_B控制寄存器TBCTL11.6.2 Timer_B寄存器TBR11.6.3 捕獲/比較控制寄存器CCTLx11.6.4 Timer_B中斷向量寄存器第12章 USART通信模塊的UART功能12.1 異步模式12.1.1 異步幀格式12.1.2 異步通信的波特率發生器12.1.3 異步通信格式12.1.4 線路空閑多機模式12.1.5 地址位多機通信格式12.2 中斷和中斷允許12.2.1 USART接收允許12.2.2 USART發送允許12.2.3 USART接收中斷操作12.2.4 USART發送中斷操作12.3 控制和狀態寄存器12.3.1 USART控制寄存器UCTL12.3.2 發送控制寄存器UTCTL12.3.3 接收控制寄存器URCTL12.3.4 波特率選擇和調整控制寄存器12.3.5 USART接收數據緩存URXBUF12.3.6 USART發送數據緩存UTXBUF12.4 UART模式,低功耗模式應用特性12.4.1 由UART幀啟動接收操作12.4.2 時鐘頻率的充分利用與UART的波特率12.4.3 多處理機模式對節約MSP430資源的支持12.5 波特率計算 第13章 USART通信模塊的SPI功能13.1 USART同步操作13.1.1 SPI模式中的主模式13.1.2 SPI模式中的從模式13.2 中斷與控制功能 13.2.1 USART接收/發送允許位及接收操作13.2.2 USART接收/發送允許位及發送操作13.2.3 USART接收中斷操作13.2.4 USART發送中斷操作13.3 控制與狀態寄存器13.3.1 USART控制寄存器13.3.2 發送控制寄存器UTCTL13.3.3 接收控制寄存器URCTL13.3.4 波特率選擇和調制控制寄存器13.3.5 USART接收數據緩存URXBUF13.3.6 USART發送數據緩存UTXBUF第14章 比較器Comparator_A14.1 概 述14.2 比較器A原理14.2.1 輸入模擬開關14.2.2 輸入多路切換14.2.3 比較器14.2.4 輸出濾波器14.2.5 參考電平發生器14.2.6 比較器A中斷電路14.3 比較器A控制寄存器14.3.1 控制寄存器CACTL114.3.2 控制寄存器CACTL214.3.3 端口禁止寄存器CAPD14.4 比較器A應用14.4.1 模擬信號在數字端口的輸入14.4.2 比較器A測量電阻元件14.4.3 兩個獨立電阻元件的測量系統14.4.4 比較器A檢測電流或電壓14.4.5 比較器A測量電流或電壓14.4.6 測量比較器A的偏壓14.4.7 比較器A的偏壓補償14.4.8 增加比較器A的回差第15章 模數轉換器ADC1215.1 概 述15.2 ADC12的工作原理及操作15.2.1 ADC內核15.2.2 參考電平15.3 模擬輸入與多路切換15.3.1 模擬多路切換15.3.2 輸入信號15.3.3 熱敏二極管的使用15.4 轉換存儲15.5 轉換模式15.5.1 單通道單次轉換模式15.5.2 序列通道單次轉換模式15.5.3 單通道重復轉換模式15.5.4 序列通道重復轉換模式15.5.5 轉換模式之間的切換15.5.6 低功耗15.6 轉換時鐘與轉換速度15.7 采 樣15.7.1 采樣操作15.7.2 采樣信號輸入選擇15.7.3 采樣模式15.7.4 MSC位的使用15.7.5 采樣時序15.8 ADC12控制寄存器15.8.1 控制寄存器ADC12CTL0和ADC12CTL115.8.2 轉換存儲寄存器ADC12MEMx15.8.3 控制寄存器ADC12MCTLx15.8.4 中斷標志寄存器ADC12IFG.x和中斷允許寄存器ADC12IEN.x15.8.5 中斷向量寄存器ADC12IV15.9 ADC12接地與降噪第16章 FLASH型芯片的開發16.1 開發系統概述16.1.1 開發技術16.1.2 MSP430系列的開發16.1.3 MSP430F系列的開發16.2 FLASH型的FET開發方法16.2.1 MSP430芯片的JTAG接口16.2.2 FLASH型仿真工具16.3 FLASH型的BOOT ROM16.3.1 標準復位過程和進入BSL過程16.3.2 BSL的UART協議16.3.3 數據格式16.3.4 退出BSL16.3.5 保護口令16.3.6 BSL的內部設置和資源附錄A 尋址空間附錄B 指令說明B.1 指令匯總B.2 指令格式B.3 不增加ROM開銷的模擬指令B.4 指令說明(字母順序)B.5 用幾條指令模擬的宏指令附錄C MSP430系列單片機參數表附錄D MSP430系列單片機封裝形式附錄E MSP430系列器件命名

    標簽: flash MSP 430 超低功耗

    上傳時間: 2014-04-28

    上傳用戶:sssnaxie

  • 利用動態密勒補償電路解決LDO的穩定性問題

    利用動態密勒補償電路解決LDO的穩定性問題:針對LDO穩壓器的穩定性問題,設計了一種新穎的動態密勒補償電路8與傳統方法相比,該電路具有恒定的帶寬,大大提高了系統的瞬態響應性能,同時將開環增益提高了,左右使6LDO穩壓器具有較高的電壓調整率和負載調整率。通過具體投片,驗證了該方法的正確性和可行性。關鍵詞:低壓降穩壓器,動態密勒補償,穩定性,P型場效應管電容器

    標簽: LDO 動態 密勒補償 電路

    上傳時間: 2013-10-24

    上傳用戶:小寶愛考拉

  • 利用SPMC75本身的Flash做數據備份

    利用SPMC75本身的Flash做數據備份:SPMC75F2413A 32k字的內嵌Flash(embedded Flash)分為兩區:信息區和通用區,在同一時間只能訪問其中的一區。信息區包含64個字,尋址空間為0x8000 ~ 0x803F。地址0x8000為系統選項寄存器P_System_Option。其它地址空間可由用戶自定義重要信息比如:版本控制,日期,版權名稱,項目名稱等等。信息區的內容只有在仿真或燒錄的狀態下才能改變。32k字Flash被劃分為16個頁,每頁2K字,每頁可分為8幀,這樣32K的Flash就可以分成128個幀。只有位于00F000 ~00F7FF區域的頁面在自由運行模式下可以設置為只讀或可讀可寫,其它頁面均為只讀.也就說片內FLASH數據備份區為是0xF000~0xF7FF,備份區為Bank14,最多存儲的數據為2K字。SPMC75F2413A的32K字的內嵌式閃存結構入下圖2-1,圖2-2。

    標簽: Flash SPMC 75 數據備份

    上傳時間: 2013-11-08

    上傳用戶:6546544

  • 利用TPM2定時器產生一通道語音信號輸出,語音數據為PCM格

    利用TPM2定時器產生一通道語音信號輸出,語音數據為PCM格式:PCM的概念脈沖編碼調制(Pulse Code Modulation,PCM)是概念上最簡單、理論上最完善的編碼系統,是最早研制成功、使用最為廣泛的編碼系統,但也是數據量最大的編碼系統。PCM的編碼原理比較直觀和簡單,它的原理框圖如圖1-1所示。在這個編碼框圖中,它的輸入是模擬聲音信號,它的輸出是PCM樣本。圖中的“防失真濾波器”是一個低通濾波器,用來濾除聲音頻帶以外的信號;“波形編碼器”可暫時理解為“采樣器”,“量化器”可理解為“量化階大小(step-size)”生成器或者稱為“量化間隔”生成器。

    標簽: TPM2 PCM 定時器 語音信號

    上傳時間: 2013-11-21

    上傳用戶:DXM35

  • LED顯示屏恒流驅動電路設計

    摘要: 本文介紹了L ED 顯示屏常規型驅動電路的設計方式及其存在的缺陷, 提出了簡單的L ED 顯示屏恒流驅動方式及電路的實現。關鍵詞:L ED 顯示屏 動態掃描 驅動電路中圖分類號: TN 873+ . 93   文獻標識碼:A    文章編號: 1005- 9490(2001) 03- 0252- 051 引 言  L ED 顯示屏是80 年代后期在全球迅速發展起來的新型信息顯示媒體, 它利用發光二極管構成的點陣模塊或像素單元, 組成大面積顯示屏幕, 以其可靠性高、使用壽命、環境適應能力強、性能價格比高、使用成本低等特點, 在信息顯示領域已經得到了非常廣泛的應用[ 1 ]。L ED 顯示屏主要包括發光二極管構成的陣列、驅動電路、控制系統及傳輸接口和相應的應用軟件等, 其中驅動電路設計的好壞, 對L ED 顯示屏的顯示效果、制作成本及系統的運行性能起著很重要的作用。所以, 設計一種既能滿足控制驅動的要求, 同時使用器件少、成本低的控制驅動電路是很有必要的。本文就常規型驅動電路的設計作些分析并提出恒流驅動電路的設計方式。2 L ED 顯示屏常規驅動電路的設計  L ED 顯示屏驅動電路的設計, 與所用控制系統相配合, 通常分為動態掃描型驅動及靜態鎖存型驅動二大類。以下就動態掃描型驅動電路的設計為例為進行分析:動態掃描型驅動方式是指顯示屏上的4 行、8 行、16 行等n 行發光二極管共用一組列驅動寄存器, 通過行驅動管的分時工作, 使得每行L ED 的點亮時間占總時間的1ön , 只要每行的刷新速率大于50 Hz, 利用人眼的視覺暫留效應, 人們就可以看到一幅完整的文字或畫面[ 2 ]。常規型驅動電路的設計一般是用串入并出的通用集成電路芯片如74HC595 或MC14094 等作為列數據鎖存, 以8050 等小功率N PN 三極管為列驅動, 而以達林頓三極管如T IP127 等作為行掃描管, 其電路如圖1 所示。

    標簽: LED 顯示屏 恒流驅動 電路設計

    上傳時間: 2014-02-19

    上傳用戶:lingzhichao

  • 利用Matlab自帶的DSP模塊生成CCS的Projects的詳細操作

    利用Matlab里自帶的DSP模塊生成CCS的Projects的詳細操作

    標簽: Projects Matlab DSP CCS

    上傳時間: 2013-11-12

    上傳用戶:stampede

主站蜘蛛池模板: 多伦县| 新巴尔虎左旗| 正安县| 临湘市| 和硕县| 九龙县| 绥棱县| 西乌珠穆沁旗| 华池县| 德化县| 自治县| 政和县| 东阳市| 瑞丽市| 鹤庆县| 广东省| 孟津县| 景德镇市| 富蕴县| 兴隆县| 达日县| 洱源县| 应城市| 沂南县| 榕江县| 英山县| 阆中市| 望奎县| 定州市| 霍邱县| 通道| 黄冈市| 山阳县| 康定县| 连平县| 雷山县| 石家庄市| 白山市| 麻栗坡县| 屏东市| 张家口市|