無功功率是影響電網(wǎng)穩(wěn)定的一個(gè)重要因素,無功補(bǔ)償是保證電力系統(tǒng)高效可靠運(yùn)行的有效措施之一,它關(guān)系到整個(gè)電力系統(tǒng)能否安全穩(wěn)定的運(yùn)行。基于國內(nèi)電力市場(chǎng)的需求現(xiàn)狀,考慮到無功補(bǔ)償?shù)膶?shí)現(xiàn)條件和經(jīng)濟(jì)適應(yīng)性,研制出了一種基于DSPTMS320LF2407A控制的TSC型低壓動(dòng)態(tài)無功補(bǔ)償裝置。 本文主要研究了TSC無功補(bǔ)償?shù)幕驹恚瑹o功補(bǔ)償?shù)目刂品绞胶驮恚琈ATLAB系統(tǒng)仿真以及控制器的軟、硬件的設(shè)計(jì)。在硬件設(shè)計(jì)方面,由DSPTMS320LF2407A作為主控制器,能夠?qū)崿F(xiàn)自動(dòng)采樣計(jì)算、無功自動(dòng)調(diào)節(jié)、故障保護(hù)、數(shù)據(jù)存儲(chǔ)等功能,具有比傳統(tǒng)的單片機(jī)控制運(yùn)算速度高,實(shí)時(shí)性好的特點(diǎn)。采用晶閘管控制投切電容器,完全實(shí)現(xiàn)了電容器的快速,無弧,無沖擊投切,具有優(yōu)良的性能。在軟件上,采用C語言和匯編語言混合編程。在投切原則上,與常見的功率因數(shù)控制方案相比較,采用無功功率和功率因數(shù)相結(jié)合控制方式,避免了輕載投切振蕩,使無功調(diào)節(jié)更為合理。 為了實(shí)現(xiàn)裝置應(yīng)具有的功能,本文設(shè)計(jì)并制作了較為完整的控制電路及其外圍設(shè)備的硬件電路。文中設(shè)計(jì)編寫了整個(gè)控制系統(tǒng)的控制程序,給出了控制軟件的結(jié)構(gòu)框圖。結(jié)果表明本裝置軟硬件設(shè)計(jì)合理,控制方法可行,系統(tǒng)運(yùn)行可靠,達(dá)到了預(yù)期的目的。
標(biāo)簽: DSP TSC 動(dòng)態(tài)
上傳時(shí)間: 2013-07-05
上傳用戶:fff4444
直接轉(zhuǎn)矩控制技術(shù)是繼矢量控制技術(shù)之后交流調(diào)速領(lǐng)域中新興的控制技術(shù),它采用空間矢量的分析方法,在定子坐標(biāo)系下計(jì)算并控制轉(zhuǎn)矩和磁鏈,以獲得轉(zhuǎn)矩的高動(dòng)態(tài)性能。比較于矢量控制,它省去了復(fù)雜的矢量變換,克服了對(duì)電機(jī)轉(zhuǎn)子參數(shù)的依賴性,具有轉(zhuǎn)矩響應(yīng)快的優(yōu)點(diǎn)。然而,異步電動(dòng)機(jī)的直接轉(zhuǎn)矩控制系統(tǒng)存在轉(zhuǎn)矩、電流和磁鏈脈動(dòng)較大,開關(guān)頻率不恒定的問題。本文在傳統(tǒng)直接轉(zhuǎn)矩控制的基礎(chǔ)上,針對(duì)其存在的缺點(diǎn)提出了基于空間矢量脈寬調(diào)制的直接轉(zhuǎn)矩控制策略。 這種新型的直接轉(zhuǎn)矩控制策略使空間矢量脈寬調(diào)制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)相結(jié)合。把電動(dòng)機(jī)和PWM逆變器看成一體,使電動(dòng)機(jī)獲得賦值恒定的近似理想的圓形磁場(chǎng),解決其轉(zhuǎn)矩、電流、磁鏈脈動(dòng)大,開關(guān)頻率不恒定的問題。在論文撰寫的過程中做了如下工作: 根據(jù)電機(jī)原理和坐標(biāo)變換理論,建立定子正交α—β兩相靜止坐標(biāo)系下的異步電動(dòng)機(jī)的數(shù)學(xué)模型,包括電機(jī)的磁鏈模型、轉(zhuǎn)矩模型和運(yùn)動(dòng)方程。 設(shè)計(jì)PI控制器,該控制器把轉(zhuǎn)矩和磁鏈誤差信號(hào)轉(zhuǎn)換成參考電壓,然后通過坐標(biāo)變換把參考電壓變換成SVPWM模塊所需的指令電壓,對(duì)SVPWM模塊進(jìn)行控制。 設(shè)計(jì)SVPWM控制模塊,其中設(shè)計(jì)了期望電壓空間矢量的合成方法,矢量區(qū)段的判斷,計(jì)算了開關(guān)器件的導(dǎo)通時(shí)間和時(shí)刻。 通過理論分析和設(shè)計(jì)各個(gè)模塊,組成了控制系統(tǒng)逆變器部分的仿真模型。在MATLAB/SIMULINK仿真工具箱中搭建仿真模型,通過設(shè)置合理的仿真參數(shù)、電機(jī)參數(shù)、給定量參數(shù)以及PI控制器的控制參數(shù)對(duì)系統(tǒng)進(jìn)行仿真研究,從而在理論上驗(yàn)證系統(tǒng)設(shè)計(jì)的正確性。 仿真實(shí)驗(yàn)結(jié)果證明了這種基于空間矢量脈寬調(diào)制的直接轉(zhuǎn)矩控制方法可以有效改善直接轉(zhuǎn)矩控制系統(tǒng)的性能。減小傳統(tǒng)直接轉(zhuǎn)矩控制中的磁鏈和轉(zhuǎn)矩脈動(dòng),并使逆變器工作在恒定的開關(guān)頻率。最后總結(jié)論文所做的研究工作,并展望了今后的研究重點(diǎn)和方向。
標(biāo)簽: SVPWM 異步電動(dòng)機(jī) 直接轉(zhuǎn)矩
上傳時(shí)間: 2013-04-24
上傳用戶:dancnc
本文設(shè)計(jì)的變頻調(diào)速恒壓供水系統(tǒng)由上位機(jī)、PLC、變頻器、壓力變送器等組成。本系統(tǒng)包含三臺(tái)水泵電動(dòng)機(jī),采用通用變頻器來實(shí)現(xiàn)對(duì)三相水泵電動(dòng)機(jī)組的軟啟動(dòng)和變頻調(diào)速,運(yùn)行切換采用“先開先停”的原則。壓力變送器檢測(cè)當(dāng)前水壓信號(hào),送入PLC與設(shè)定值經(jīng)PID比較運(yùn)算,從而控制變頻器的輸出電壓和頻率,進(jìn)而改變水泵電動(dòng)機(jī)組的轉(zhuǎn)速來改變供水量,最終保持管網(wǎng)壓力恒定在設(shè)定值附近。把模糊控制算法引入到控制系統(tǒng)中,從而改善了系統(tǒng)的靜動(dòng)態(tài)特性。 模糊控制是一種不依賴于被控過程數(shù)學(xué)模型的仿人思維的控制技術(shù)。它可以利用領(lǐng)域?qū)<业牟僮鹘?jīng)驗(yàn)或知識(shí)建立被控系統(tǒng)的模糊規(guī)則,有較好的知識(shí)表達(dá)能力。但傳統(tǒng)的模糊控制同PID算法一樣,均為“事后調(diào)節(jié)”,因而對(duì)大遲延對(duì)象的控制效果不是很理想。預(yù)測(cè)控制的核心是不僅注意過去及現(xiàn)在的目標(biāo)值,而且注意將來的目標(biāo)值,使受控量和目標(biāo)值的偏差盡可能地小,從而提高系統(tǒng)的控制性能。預(yù)測(cè)控制和模糊控制是各自獨(dú)立發(fā)展起來的兩類控制方法,在二者充分發(fā)展的基礎(chǔ)上,提出將預(yù)測(cè)的思想和模糊的思想結(jié)合起來,形成一種新的控制方法——模糊預(yù)測(cè)控制FPC。 本文將FPC技術(shù)應(yīng)用于供水系統(tǒng),設(shè)計(jì)出自調(diào)整修正因子模糊PID控制器,克服了傳統(tǒng)PID控制設(shè)計(jì)中的參數(shù)調(diào)整困難的問題。模糊PID控制是在大誤差范圍內(nèi)采用模糊控制,以提高動(dòng)態(tài)響應(yīng)速度;在小誤差范圍內(nèi)采用PID控制,引入積分控制作用以消除靜態(tài)誤差,提高控制精度。本設(shè)計(jì)通過變頻調(diào)速實(shí)現(xiàn)恒水壓控制,并針對(duì)系統(tǒng)的時(shí)滯特點(diǎn)采用Smith預(yù)估控制器進(jìn)行補(bǔ)償。利用Matlab對(duì)其模型進(jìn)行仿真,仿真結(jié)果與傳統(tǒng)控制算法相比較,該算法具有魯棒性好,實(shí)現(xiàn)簡單,易于在線調(diào)整等優(yōu)點(diǎn),系統(tǒng)響應(yīng)曲線沒有超調(diào),系統(tǒng)的建立時(shí)間比較短,抗干擾能力強(qiáng)。 通過對(duì)上位機(jī)和PLC之間通信的分析和研究,完成了上、下位機(jī)的通信設(shè)置,給出了上位機(jī)監(jiān)控程序編寫方法,通過通信模塊實(shí)現(xiàn)了對(duì)供水系統(tǒng)的遠(yuǎn)程監(jiān)控及故障報(bào)警。 所開發(fā)的系統(tǒng)將FPC與PLC相結(jié)合,克服了傳統(tǒng)的調(diào)節(jié)器的缺點(diǎn),充分發(fā)揮了PLC控制靈活、編程方便、適應(yīng)性強(qiáng)的優(yōu)點(diǎn),提高了控制的精確度。實(shí)驗(yàn)結(jié)果表明,該系統(tǒng)能對(duì)異步電動(dòng)機(jī)轉(zhuǎn)速實(shí)現(xiàn)精確控制,實(shí)用性強(qiáng),具有一定的推廣價(jià)值。
標(biāo)簽: PLC FPC 變頻調(diào)速系統(tǒng)
上傳時(shí)間: 2013-05-19
上傳用戶:sdq_123
21世紀(jì),人類面臨著實(shí)現(xiàn)經(jīng)濟(jì)和社會(huì)可持續(xù)發(fā)展的重大挑戰(zhàn),能源問題越來越突出,太陽能等可再生能源逐漸成為人類關(guān)注的焦點(diǎn)。時(shí)至今日,人類對(duì)光伏系統(tǒng)的研究越來越深入廣泛,但在光伏系統(tǒng)的研發(fā)過程中,太陽能電池由于受日照強(qiáng)度、環(huán)境溫度影響較大,導(dǎo)致實(shí)驗(yàn)成本過高,研發(fā)周期變長。太陽能電池陣列模擬器便能較好地解決這一問題。 @@ 本文首先對(duì)比了模擬式太陽能電池模擬器和數(shù)字式太陽能電池模擬器的優(yōu)缺點(diǎn),選取了數(shù)字式太陽能電池陣列模擬器作為研究對(duì)象,并對(duì)研究太陽能電池陣列模擬器的實(shí)際意義作了闡述。隨后描述了太陽能電池的輸出特性,討論了適合工程計(jì)算的太陽能電池陣列數(shù)學(xué)物理模型。 @@ 本文研究的太陽能電池陣列模擬器由功率電路和控制電路兩部分組成。功率電路選取了半橋型DC/DC電路作為主電路拓?fù)洌瑢?duì)其工作過程進(jìn)行了分析,并對(duì)各部分電路進(jìn)行了設(shè)計(jì)。然后設(shè)計(jì)了電壓電流雙閉環(huán)調(diào)節(jié)器,在此基礎(chǔ)之上用PSIM仿真軟件對(duì)所設(shè)計(jì)的太陽能電池陣列模擬器進(jìn)行了仿真,包括靜態(tài)工作點(diǎn)的仿真以及動(dòng)態(tài)響應(yīng)速度的仿真,通過仿真驗(yàn)證了模擬器能夠達(dá)到所要求指標(biāo)。 @@ 控制電路板是整個(gè)模擬器的核心控制部分,通過控制運(yùn)算提供輸出電壓的參考值,進(jìn)而提供控制功率管開通關(guān)斷的PWM信號(hào)。本文選取了microchip公司的dsPIC30F2023作為主控制芯片,分析了該型號(hào)微處理芯片的性能特點(diǎn),介紹了模擬信號(hào)采樣電路、232通訊電路、人機(jī)交互界面電路等外圍電路的硬件設(shè)計(jì),調(diào)節(jié)器采用了數(shù)字PID控制。 @@ 在MPLAB集成開發(fā)環(huán)境中進(jìn)行了軟件方案的設(shè)計(jì),主要包括主程序、生成PWM程序、AD采樣、故障處理、人機(jī)交互程序等,介紹了各個(gè)模塊的程序流程。 @@ 軟硬件系統(tǒng)設(shè)計(jì)完成后,最終實(shí)現(xiàn)了太陽能電池陣列模擬器,可以為光伏系統(tǒng)的研究提供一個(gè)良好的實(shí)驗(yàn)平臺(tái)。 @@關(guān)鍵詞:太陽能電池陣列模擬器;半橋型DC/DC變換器;dsPIC30F2023
標(biāo)簽: 太陽能電池 陣列 模擬
上傳時(shí)間: 2013-07-28
上傳用戶:cceezzpp
隨著自動(dòng)化技術(shù)的發(fā)展和城市化進(jìn)程的加快,照明用電占人類總發(fā)電量的比重也越來越大,對(duì)電子鎮(zhèn)流器的要求也越來越高,即功率因數(shù)高低的要求更加明確,功率因數(shù)高低已成為綜合衡量整流設(shè)備的一個(gè)重要指標(biāo)。 本次課題采用功率因數(shù)控制芯片UC3854為核心,設(shè)計(jì)了一種較寬電壓輸入范圍、固定電壓輸出的250W的AC/DC變換器。對(duì)該變換器所用的有源功率因數(shù)校正(APFC)系統(tǒng)與UC3854芯片的原理和結(jié)構(gòu)做了詳細(xì)的分析與討論,介紹了UC3854的管腳排列及功能。所設(shè)計(jì)的以UC3854為核心的有源功率因數(shù)校正器能在90V~220V的寬電壓輸入范圍內(nèi)得到穩(wěn)定的380V直流電壓輸出,并使功率因數(shù)達(dá)到0.99以上。 MATLAB強(qiáng)大的信號(hào)分析處理能力對(duì)高效地設(shè)計(jì)APFC系統(tǒng)及整定各個(gè)環(huán)節(jié)的參數(shù)帶來了極大便利。本文同時(shí)也采用MATLAB設(shè)計(jì)實(shí)現(xiàn)了一個(gè)有源功率因數(shù)校正器的仿真,用SIMULINK已有模塊模擬了UC3854的控制過程,給出了仿真電路和波形。 本文創(chuàng)新性的將系統(tǒng)工程引入APFC電路中,將系統(tǒng)工程中的建模分析和狀態(tài)空間法應(yīng)用到此次設(shè)計(jì)的系統(tǒng)中,使得此次工程設(shè)計(jì)提升到了抽象的數(shù)學(xué)概念上。用數(shù)學(xué)模型可以表達(dá)出主電路的工作原理,從狀態(tài)空間法中找出了改變系統(tǒng)動(dòng)態(tài)性能的相應(yīng)參數(shù),為此類電路的設(shè)計(jì)提供了理論依據(jù)。
標(biāo)簽: 有源功率因數(shù) 校正技術(shù)
上傳時(shí)間: 2013-05-24
上傳用戶:15736969615
本文以單元機(jī)組協(xié)調(diào)控制系統(tǒng)為研究對(duì)象,在分析了協(xié)調(diào)控制系統(tǒng)特性的基礎(chǔ)上,總結(jié)了實(shí)際運(yùn)行的協(xié)調(diào)控制系統(tǒng)中存在的問題和影響控制效果的原因。把汽包鍋爐單元機(jī)組簡化為一個(gè)具有雙輸入、雙輸出的被控對(duì)象以及做了一些合理假設(shè)的前提下對(duì)協(xié)調(diào)控制系統(tǒng)建立的動(dòng)態(tài)數(shù)學(xué)模型進(jìn)行分析。 從快速滿足電網(wǎng)負(fù)荷指令的需求,抑制各種干擾,保證機(jī)組的穩(wěn)定運(yùn)行的中心任務(wù)出發(fā),首次提出采用智能PID控制器作為汽機(jī)的主控制器,解決常規(guī)單自由度PID控制器不能兼顧目標(biāo)跟蹤特性和抗干擾特性的問題,并在一定程度上解決了協(xié)調(diào)控制系統(tǒng)對(duì)鍋爐前饋回路過分依賴的問題。 針對(duì)鍋爐對(duì)象大遲延特性,利用模糊預(yù)估策略對(duì)過程的輸出進(jìn)行預(yù)測(cè)。補(bǔ)償了鍋爐側(cè)純延遲帶來的不利影響;而且還具備了模糊控制不依賴于系統(tǒng)的數(shù)學(xué)模型,具有對(duì)系統(tǒng)參數(shù)變化不敏感,對(duì)于非線性、時(shí)變時(shí)滯等特性,呈現(xiàn)出較好的魯棒性等特點(diǎn),當(dāng)出現(xiàn)較大的誤差時(shí),可以把系統(tǒng)從很大的偏離中拉回來,提高了系統(tǒng)的響應(yīng)速度和安全性。仿真試驗(yàn)表明采用模糊預(yù)估能夠降低系統(tǒng)的超調(diào),取得較好的控制效果。 由于單元機(jī)組中的鍋爐與汽機(jī)為強(qiáng)耦合系統(tǒng),為了實(shí)現(xiàn)一對(duì)一的單一控制,決定采用神經(jīng)網(wǎng)絡(luò)多變量解禍控制,通過仿真證明,達(dá)到了很好的解耦效果。 為了從全局上優(yōu)化系統(tǒng)的控制行為,采用模糊控制策略對(duì)鍋爐和汽機(jī)的指令進(jìn)行智能化的調(diào)整和約束。根據(jù)不同的負(fù)荷階段、主要參數(shù)的變化情況及時(shí)調(diào)整有關(guān)的指令,使協(xié)調(diào)控制系統(tǒng)向著有利于全局優(yōu)化的方向調(diào)節(jié)。 本文將神經(jīng)網(wǎng)絡(luò)、模糊控制思想引入?yún)f(xié)調(diào)控制系統(tǒng),并在此基礎(chǔ)上構(gòu)造神經(jīng)網(wǎng)絡(luò)、模糊自適應(yīng)控制的智能PID控制方案。通過理論分析和仿真實(shí)驗(yàn)證明了這一控制方法在電廠協(xié)調(diào)控制系統(tǒng)中的實(shí)用價(jià)值,和傳統(tǒng)的PID控制比較,這種智能控制算法有效的提高了負(fù)荷的響應(yīng)速率,保證了系統(tǒng)的品質(zhì),取得了很好的控制效果。
標(biāo)簽: 火電廠 單元機(jī)組 協(xié)調(diào)控制
上傳用戶:luke5347
高壓TSC(Thyristor Switch Capacitor)裝置是指額定工作電壓為6kV-35kV晶閘管投切電容器補(bǔ)償裝置,是一種典型靜止無功補(bǔ)償器,其對(duì)增強(qiáng)系統(tǒng)穩(wěn)定性、提高系統(tǒng)運(yùn)行經(jīng)濟(jì)性,保證電壓質(zhì)量及改善電能質(zhì)量都能發(fā)揮良好的作用。目前國內(nèi)對(duì)高壓TSC裝置研制與生產(chǎn)還處于起步階段,加速高壓TSC裝置的國產(chǎn)化,對(duì)在我國電力系統(tǒng)中早日推廣與應(yīng)用高壓TSC裝置具有重大意義。 首先在無功功率的測(cè)量上,如何在有諧波干擾等復(fù)雜環(huán)境下準(zhǔn)確檢測(cè)無功功率,本文采用了基于快速傅立葉變換的方法,可以很好的完成無功功率的采集。在主電路結(jié)構(gòu)上,晶閘管開關(guān)閥是高壓TSC裝置的關(guān)鍵構(gòu)成部件,高壓TSC裝置要求晶閘管開關(guān)應(yīng)具有良好的電氣性能,要求晶閘管開關(guān)應(yīng)是有效和可靠的。本文通過晶閘管特性和串聯(lián)技術(shù)的研究,給出了晶閘管串聯(lián)開關(guān)的靜態(tài)均壓和動(dòng)態(tài)均壓方法,設(shè)計(jì)出合理使用的電路結(jié)構(gòu)。通過仿真分析,驗(yàn)證了均壓電路的效果。 電容器無涌流投入技術(shù)也是TSC主要研究點(diǎn),由于在高壓系統(tǒng)中器件兩端承受的電壓較高,低壓TSC系統(tǒng)中常用的過零固態(tài)繼電器或集成過零觸發(fā)芯片滿足不了耐壓的需要,本文設(shè)計(jì)了專門的過零檢測(cè)及觸發(fā)電路,在器件兩端電壓過零時(shí)觸發(fā),避免了由于電容器殘壓過高而造成的巨大沖擊電流,從而在硬件電路上實(shí)現(xiàn)電容器組的無過渡過程投切,電路簡單可靠。同時(shí),在控制策略上將幾種投切判據(jù)進(jìn)行了比較,采用了電壓無功復(fù)合投切判據(jù),以無功功率作為主判據(jù),電壓作為輔助判據(jù),有效地克服了僅以功率因數(shù)作為投切判據(jù)的控制方式中的輕載時(shí)容易產(chǎn)生投切振蕩而重載時(shí)容易出現(xiàn)補(bǔ)償不充分的缺點(diǎn)。
標(biāo)簽: TSC 無功補(bǔ)償技術(shù)
上傳用戶:6546544
統(tǒng)一潮流控制器(UPFC)作為一種典型的FACTS裝置,綜合了FACTS元件的多種靈活控制手段,能同時(shí)或選擇地控制線路的基本參數(shù)(電壓、阻抗、相角),也可交替地控制線路上的有功和無功潮流,還可獨(dú)立地提供可控的并聯(lián)無功補(bǔ)償。因此UPFC被認(rèn)為是最有創(chuàng)造性,功能最強(qiáng)大的FACTS元件。 首先,本文詳細(xì)分析了統(tǒng)一潮流控制器的基本結(jié)構(gòu)和工作原理。采用開關(guān)函數(shù)法建立了電壓源型變流器的數(shù)學(xué)模型,并推導(dǎo)了統(tǒng)一潮流控制器在abc三相坐標(biāo)系和dq旋轉(zhuǎn)坐標(biāo)系下的數(shù)學(xué)模型,該模型考慮到直流環(huán)節(jié)電容儲(chǔ)能的動(dòng)態(tài)變化過程,從而使其更適合于系統(tǒng)的動(dòng)態(tài)特性分析。本文討論的UPFC控制采用基于兩相旋轉(zhuǎn)坐標(biāo)系下的非線性解耦控制方案,在UPFC的精確模型下具有可快速跟蹤給定值的優(yōu)點(diǎn),且在dq坐標(biāo)系下可以實(shí)現(xiàn)有功和無功功率的獨(dú)立控制;在電容電壓PI調(diào)節(jié)中加入電流反饋,使其更接近真實(shí)值。 其次,本論文在分析UPFC數(shù)學(xué)模型的基礎(chǔ)上建立了UPFC在MATLAB平臺(tái)上的仿真模型;然后利用MATLAB建立了三相環(huán)形電力系統(tǒng),將UPFC模型應(yīng)用到該系統(tǒng)中,著重研究了UPFC對(duì)電網(wǎng)電能質(zhì)量的影響。首先研究了UPFC對(duì)故障系統(tǒng)中電網(wǎng)功率的影響以及UPFC對(duì)提高故障系統(tǒng)功率穩(wěn)定性的作用;同時(shí),對(duì)UPFC能夠抑制無故障系統(tǒng)中系統(tǒng)接入電網(wǎng)時(shí)的功率沖擊進(jìn)行了研究。最后,通過仿真波形研究了UPFC對(duì)電網(wǎng)故障中電壓跌落的補(bǔ)償作用以及UPFC對(duì)正常系統(tǒng)電壓的影響,結(jié)果發(fā)現(xiàn),UPFC可以保持故障中的系統(tǒng)電壓為正弦波。
標(biāo)簽: UPFC 控制器 仿真研究
上傳用戶:1406054127
異步電動(dòng)機(jī)直接轉(zhuǎn)矩控制技術(shù)是近年來發(fā)展起來的一種新型、高性能交流調(diào)速技術(shù)。它利用電壓源型逆變器的工作過程,控制定子磁鏈的走或停,即調(diào)整定子磁鏈與轉(zhuǎn)子磁鏈的夾角大小,從而對(duì)電機(jī)轉(zhuǎn)矩進(jìn)行直接控制以獲得良好的動(dòng)態(tài)性能。 論文首先探討了直接轉(zhuǎn)矩控制技術(shù)的現(xiàn)狀和發(fā)展趨勢(shì),闡述了直接轉(zhuǎn)矩控制的基本原理,分析了常用的圓形磁鏈軌跡控制方法,詳細(xì)介紹了直接轉(zhuǎn)矩控制系統(tǒng)主要模塊的設(shè)計(jì)和實(shí)現(xiàn)。在分析交流異步電機(jī)動(dòng)態(tài)數(shù)學(xué)模型、轉(zhuǎn)矩和磁鏈計(jì)算方程的基礎(chǔ)上,分析了直接轉(zhuǎn)矩控制的異步電動(dòng)機(jī)在低速運(yùn)行時(shí)存在轉(zhuǎn)矩脈動(dòng)和轉(zhuǎn)速波動(dòng)較大的問題。基于占空比控制和離散占空比控制的異步電動(dòng)機(jī)直接轉(zhuǎn)矩控制方法,由電機(jī)電磁轉(zhuǎn)矩公式和合成電壓矢量理論推導(dǎo)了直接計(jì)算占空比的方法,在不影響系統(tǒng)各方面性能指標(biāo)的情況下使降低轉(zhuǎn)矩脈動(dòng)的計(jì)算量大大減少,方便了計(jì)算和使用。兩種方法均具有系統(tǒng)結(jié)構(gòu)簡單、占空比計(jì)算量小等優(yōu)點(diǎn)。研究結(jié)果驗(yàn)證了這兩種方法的正確性和有效性。在第一種方法中加入了單神經(jīng)元控制器,使系統(tǒng)的動(dòng)靜態(tài)性能得到了提高。接著對(duì)利用空間電壓矢量調(diào)制的直接轉(zhuǎn)矩控制系統(tǒng)進(jìn)行了研究。仿真結(jié)果表明此種方法能夠有效的降低轉(zhuǎn)矩脈動(dòng),使系統(tǒng)性能得到提高。 以TMS320F2812DSP為CPU搭建了直接轉(zhuǎn)矩控制硬件實(shí)驗(yàn)平臺(tái),調(diào)試了硬件電路。編寫了相關(guān)軟件流程圖和程序清單。
標(biāo)簽: DSP 異步電動(dòng)機(jī) 直接轉(zhuǎn)矩控制
上傳用戶:cc111
超聲波電源廣泛應(yīng)用于超聲波加工、診斷、清洗等領(lǐng)域,其負(fù)載超聲波換能器是一種將超音頻的電能轉(zhuǎn)變?yōu)闄C(jī)械振動(dòng)的器件。由于超聲換能器是一種容性負(fù)載,因此換能器與發(fā)生器之間需要進(jìn)行阻抗匹配才能工作在最佳狀態(tài)。串聯(lián)匹配能夠有效濾除開關(guān)型電源輸出方波存在的高次諧波成分,因此應(yīng)用較為廣泛。但是環(huán)境溫度或元件老化等原因會(huì)導(dǎo)致?lián)Q能器的諧振頻率發(fā)生漂移,使諧振系統(tǒng)失諧。傳統(tǒng)的解決辦法就是頻率跟蹤,但是頻率跟蹤只能保證系統(tǒng)整體電壓電流同頻同相,由于工作頻率改變了而匹配電感不變,此時(shí)換能器內(nèi)部動(dòng)態(tài)支路工作在非諧振狀態(tài),導(dǎo)致?lián)Q能器功率損耗和發(fā)熱,致使輸出能量大幅度下降甚至停振,在實(shí)際應(yīng)用中受到限制。所以,在跟蹤諧振點(diǎn)調(diào)節(jié)逆變器開關(guān)頻率的同時(shí)應(yīng)改變匹配電感才能使諧振系統(tǒng)工作在最高效能狀態(tài)。針對(duì)按固定諧振點(diǎn)匹配超聲波換能器電感參數(shù)存在的缺點(diǎn),本文應(yīng)用耦合振蕩法對(duì)換能器的匹配電感和耦合頻率之間的關(guān)系建立數(shù)學(xué)模型,證實(shí)了匹配電感隨諧振頻率變化的規(guī)律。給出利用這一模型與耦合工作頻率之間的關(guān)系動(dòng)態(tài)選擇換能器匹配電感的方法。經(jīng)過分析比較,選擇了基于磁通控制原理的可控電抗器作為匹配電感,通過改變電抗控制度調(diào)節(jié)電抗值。并給出了實(shí)現(xiàn)這一方案的電路原理和控制方法。最后本文以DSP TMS320F2812為核心設(shè)計(jì)出實(shí)現(xiàn)這一原理的超聲波逆變電源。實(shí)驗(yàn)結(jié)果表明基于磁通控制的可控電抗器可以實(shí)現(xiàn)電抗值隨電抗控制度線性無級(jí)可調(diào),由于該電抗器輸出正弦波,理論上沒有諧波污染。具體采用復(fù)合控制策略,穩(wěn)態(tài)時(shí),換能器工作在DPLL鎖定頻率上;動(dòng)態(tài)時(shí),逐步修改匹配電抗大小,搜索輸出電流的最大值,再結(jié)合DPLL鎖定該頻率。配合PS-PWM可實(shí)現(xiàn)功率連續(xù)可調(diào)。該超聲波換能系統(tǒng)能夠有效的跟隨最大電流輸出頻率,即使頻率發(fā)生漂移系統(tǒng)仍能保持工作在最佳狀態(tài),具有實(shí)際應(yīng)用價(jià)值。
標(biāo)簽: 動(dòng)態(tài) 換能器 超聲波電源
上傳用戶:lacsx
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1