離散傅里葉變換,(DFT)Direct Fouriet Transformer(PPT課件) 一、序列分類對一個序列長度未加以任何限制,則一個序列可分為: 無限長序列:n=-∞~∞或n=0~∞或n=-∞~ 0 有限長序列:0≤n≤N-1有限長序列在數字信號處理是很重要的一種序列。由于計算機容量的限制,只能對過程進行逐段分析。二、DFT引入由于有限長序列,引入DFT(離散付里葉變換)。DFT它是反映了“有限長”這一特點的一種有用工具。DFT變換除了作為有限長序列的一種付里葉表示,在理論上重要之外,而且由于存在著計算機DFT的有效快速算法--FFT,因而使離散付里葉變換(DFT)得以實現,它使DFT在各種數字信號處理的算法中起著核心的作用。三、本章主要討論離散付里葉變換的推導離散付里葉變換的有關性質離散付里葉變換逼近連續時間信號的問題第二節付里葉變換的幾種形式傅 里 葉 變 換 : 建 立 以 時 間 t 為 自 變 量 的 “ 信 號 ” 與 以 頻 率 f為 自 變 量 的 “ 頻 率 函 數 ”(頻譜) 之 間 的 某 種 變 換 關 系 . 所 以 “ 時 間 ” 或 “ 頻 率 ” 取 連 續 還 是 離 散 值 , 就 形 成 各 種 不 同 形 式 的 傅 里 葉 變 換 對 。, 在 深 入 討 論 離 散 傅 里 葉 變 換 D F T 之 前 , 先 概 述 四種 不 同 形式 的 傅 里 葉 變 換 對 . 一、四種不同傅里葉變換對傅 里 葉 級 數(FS):連 續 時 間 , 離 散 頻 率 的 傅 里 葉 變 換 。連 續 傅 里 葉 變 換(FT):連 續 時 間 , 連 續 頻 率 的 傅 里 葉 變 換 。序 列 的 傅 里 葉 變 換(DTFT):離 散 時 間 , 連 續 頻 率 的 傅 里 葉 變 換.離 散 傅 里 葉 變 換(DFT):離 散 時 間 , 離 散 頻 率 的 傅 里 葉 變 換1.傅 里 葉 級 數(FS)周期連續時間信號 非周期離散頻譜密度函數。 周期為Tp的周期性連續時間函數 x(t) 可展成傅里葉級數X(jkΩ0) ,是離散非周期性頻譜 , 表 示為:例子通過以下 變 換 對 可 以 看 出 時 域 的 連 續 函 數 造 成 頻 域 是 非 周 期 的 頻 譜 函 數 , 而 頻 域 的 離 散 頻 譜 就 與 時 域 的 周 期 時 間 函 數 對 應 . (頻域采樣,時域周期延 拓)2.連 續 傅 里 葉 變 換(FT)非周期連續時間信號通過連續付里葉變換(FT)得到非周期連續頻譜密度函數。
上傳時間: 2013-11-19
上傳用戶:fujiura
單片機指令系統 3.1 MCS-51指令簡介 3.2 指令系統 3.1 MCS-51指令簡介 二、MCS-51系列單片機指令系統分類 按尋址方式分為以下七種:按功能分為以下四種: 1、立即立即尋址 1、數據傳送指令位操 2、直接尋址 2、算術運算指令 3、寄存器尋址 3、邏輯運算指令 4、寄存器間接尋址指令 4、控制轉移類指令 5、相對尋址 5、位操作指令 6、變址尋址 7、位尋址 三、尋址方式 3、寄存器間接尋址 MOV A, @R1 操作數是通過寄存器間接得到的。 4、立即尋址 MOV A, #40H 操作數在指令中直接給出。 5、基址寄存器加變址寄存器尋址 以DPTR或PC為基址寄存器,以A為變址寄存器, 以兩者相加形成的16位地址為操作數的地址。 MOVC A, @A+DPTR MOVC A, @A+PC 四、指令中常用符號說明 Rn——當前寄存器區的8個工作寄存器R0~R7(n=0~7); Ri——當前寄存器區可作地址寄存器的2個工作寄存器R0和R1(i=0,1); direct——8位內部數據存儲器單元的地址及特殊功能寄存器的地址; #data——表示8位常數(立即數); #datal6——表示16位常數; add 16——表示16位地址; addrll——表示11位地址; rel——8位帶符號的地址偏移量; bit——表示位地址; @——間接尋址寄存器或基址寄存器的前綴; ( )——表示括號中單元的內容 (( ))——表示間接尋址的內容; 五、MCS-51指令簡介 1. 以累加器A為目的操作數的指令 2. 以Rn為目的操作數的指令 3. 以直接地址為目的操作數的指令 4. 以寄存器間接地址為目的操作數指令 應用舉例1 8段數碼管顯示 應用舉例2 3.2 指令系統 2、堆棧操作指令 3. 累加器A與外部數據傳輸指令 4. 查表指令 MOVC A, @A+PC 例子: 5. 字節交換指令 6. 半字節交換指令 二、算術操作類指令 PSW寄存器 2. 帶進位加法指令 3. 加1指令 4. 十進制調整指令 5. 帶借位減法指令(Subtraction) 6. 減1指令(Decrease) 7. 乘法指令(Multiplication) 8. 除法指令(Division) 三、邏輯運算指令 1. 簡單邏輯操作指令 2. 循環指令 帶進位左循環指令(Rotate Accumulator Left through Carry flag) 右循環指令(Rotate Accumulator Right) 帶進位右循環指令(Rotate A Right with C) 3. 邏輯與指令 4. 邏輯或指令 5. 邏輯異或指令 四、控制轉移類指令 1. 跳轉指令 相對轉移指令 SJMP rel PC←(PC)+2 PC←(PC)+rel 程序中標號與地址之間的關系 2. 條件轉移指令 3. 比較不相等轉移指令 4. 減 1 不為 0 轉移指令 5. 調用子程序指令 7. 中斷返回指令 五、位操作指令 1. 數據位傳送指令 2. 位變量邏輯指令 3. 條件轉移類指令
上傳時間: 2013-10-27
上傳用戶:xuanjie
82C59A-2是為簡化微處理機系統中斷接口而實現的LSI外圍芯片。也叫做PIC(Programmable Interrupt Controller)。是高性能高速度芯片。在多級優先級中斷系統內82C59A-1402已經把CPU從對任務的輪詢中解救出來。PCI可由軟件進行控制,使用于各種不同的環境,聯級可接受8~64個中斷輸入。 管腳與NMOS8259A-2兼容單片8級優先級,級聯可擴64級多種可編程中斷方式各自專用的請求屏蔽能力與Intel系列機兼容全部采用靜態設計低功耗5V的電源供電。
上傳時間: 2013-10-30
上傳用戶:zhliu007
高性能可編程DMA控制接口82C37A-54.1 概述對象實體:直接存儲器訪問(DMA)控制接口芯片82C37A-5芯片的特點:1、管腳引線與NMOS 8237A-5兼容。2、允許/禁止單獨DMA請求控制。3、頻率從0~5MHz區間全靜態設計。4、低電平操作。 5、4個各自獨立的DMA通道并獨立的進行初始化。6、存儲器到存儲器之間傳送。7、存儲器模塊初始化處理。8、地址的增量和減量。9、傳送速率可達1.6MB/s.10、可直接擴展成任意數量的通道。11 、終止傳送的過程即輸入結束。12、軟件請求。13、獨立信號DREQ和信號DACK的極性控制。4.2 82C37A-5的體系結構4.2.1 基本結構描述1. 82C37A-5內部配備了規模為344位的內部存儲器,它是以寄存器的形式出現的。2. 配有3個基本的控制模塊: (1)定時及控制模塊; (2)優先級編碼及循環優先級控制模塊;(3)命令控制模塊; 3. 12個不同類型的寄存器 。圖 4-1 82C37A-5結構圖EOP# A0~A3RESETCS#. IOW# DREQ0~DREQ3HLDAHRQ DB0~DB7DACK0~DACK3
上傳時間: 2013-10-21
上傳用戶:ming52900
82C54是專為Intel系列微處理機而設計的一種可編程時間間隔定時器/計數器,它是一種通用芯片,在系統軟件中可以把多級定時元素當成輸入/輸出端口中的一個陣列看待。1. 與所有Intel系列兼容2. 操作速度高,與8MHz的8086、80186一起可實現“零等待狀態”的操作。3. 可處理從直流到10M頻率的輸入。4. 適應性強5. 三個獨立的16位計數器6. 低功耗的CHMOS7. 與TTL完全兼容8. 6 種可編程的計數模式9. 以二進制或BCD計數10. 狀態讀返回命令
上傳時間: 2013-11-16
上傳用戶:elinuxzj
82C55A是高性能,工業標準,并行I/O的LSI外圍芯片;提供24條I/O腳線。 在三種主要的操作方式下分組進行程序設計82C88A的幾個特點:(1)與所有Intel系列微處理器兼容;(2)有較高的操作速度;(3)24條可編程I/O腳線;(4)底功耗的CHMOS;(5)與TTL兼容;(6)擁有控制字讀回功能;(7)擁有直接置位/復位功能;(8)在所有I/O輸出端口有2.5mA DC驅動能力;(9)適應性強。方式0操作稱為簡單I/O操作,是指端口的信號線可工作在電平敏感輸入方式或鎖存輸出。所以,須將控制寄存器設計為:控制寄存器中:D7=1; D6 D5=00; D2=0。D7位為1代表一個有效的方式。通過對D4 D3 D1和D0的置位/復位來實現端口A及端口B是輸入或輸出。P56表2-1列出了操作方式0端口管腳功能。
上傳時間: 2013-10-26
上傳用戶:brilliantchen
PC機之間串口通信的實現一、實驗目的 1.熟悉微機接口實驗裝置的結構和使用方法。 2.掌握通信接口芯片8251和8250的功能和使用方法。 3.學會串行通信程序的編制方法。 二、實驗內容與要求 1.基本要求主機接收開關量輸入的數據(二進制或十六進制),從鍵盤上按“傳輸”鍵(可自行定義),就將該數據通過8251A傳輸出去。終端接收后在顯示器上顯示數據。具體操作說明如下:(1)出現提示信息“start with R in the board!”,通過調整乒乓開關的狀態,設置8位數據;(2)在小鍵盤上按“R”鍵,系統將此時乒乓開關的狀態讀入計算機I中,并顯示出來,同時顯示經串行通訊后,計算機II接收到的數據;(3)完成后,系統提示“do you want to send another data? Y/N”,根據用戶需要,在鍵盤按下“Y”鍵,則重復步驟(1),進行另一數據的通訊;在鍵盤按除“Y”鍵外的任意鍵,將退出本程序。2.提高要求 能夠進行出錯處理,例如采用奇偶校驗,出錯重傳或者采用接收方回傳和發送方確認來保證發送和接收正確。 三、設計報告要求 1.設計目的和內容 2.總體設計 3.硬件設計:原理圖(接線圖)及簡要說明 4.軟件設計框圖及程序清單5.設計結果和體會(包括遇到的問題及解決的方法) 四、8251A通用串行輸入/輸出接口芯片由于CPU與接口之間按并行方式傳輸,接口與外設之間按串行方式傳輸,因此,在串行接口中,必須要有“接收移位寄存器”(串→并)和“發送移位寄存器”(并→串)。能夠完成上述“串←→并”轉換功能的電路,通常稱為“通用異步收發器”(UART:Universal Asynchronous Receiver and Transmitter),典型的芯片有:Intel 8250/8251。8251A異步工作方式:如果8251A編程為異步方式,在需要發送字符時,必須首先設置TXEN和CTS#為有效狀態,TXEN(Transmitter Enable)是允許發送信號,是命令寄存器中的一位;CTS#(Clear To Send)是由外設發來的對CPU請求發送信號的響應信號。然后就開始發送過程。在發送時,每當CPU送往發送緩沖器一個字符,發送器自動為這個字符加上1個起始位,并且按照編程要求加上奇/偶校驗位以及1個、1.5個或者2個停止位。串行數據以起始位開始,接著是最低有效數據位,最高有效位的后面是奇/偶校驗位,然后是停止位。按位發送的數據是以發送時鐘TXC的下降沿同步的,也就是說這些數據總是在發送時鐘TXC的下降沿從8251A發出。數據傳輸的波特率取決于編程時指定的波特率因子,為發送器時鐘頻率的1、1/16或1/64。當波特率指定為16時,數據傳輸的波特率就是發送器時鐘頻率的1/16。CPU通過數據總線將數據送到8251A的數據輸出緩沖寄存器以后,再傳輸到發送緩沖器,經移位寄存器移位,將并行數據變為串行數據,從TxD端送往外部設備。在8251A接收字符時,命令寄存器的接收允許位RxE(Receiver Enable)必須為1。8251A通過檢測RxD引腳上的低電平來準備接收字符,在沒有字符傳送時RxD端為高電平。8251A不斷地檢測RxD引腳,從RxD端上檢測到低電平以后,便認為是串行數據的起始位,并且啟動接收控制電路中的一個計數器來進行計數,計數器的頻率等于接收器時鐘頻率。計數器是作為接收器采樣定時,當計數到相當于半個數位的傳輸時間時再次對RxD端進行采樣,如果仍為低電平,則確認該數位是一個有效的起始位。若傳輸一個字符需要16個時鐘,那么就是要在計數8個時鐘后采樣到低電平。之后,8251A每隔一個數位的傳輸時間對RxD端采樣一次,依次確定串行數據位的值。串行數據位順序進入接收移位寄存器,通過校驗并除去停止位,變成并行數據以后通過內部數據總線送入接收緩沖器,此時發出有效狀態的RxRDY信號通知CPU,通知CPU8251A已經收到一個有效的數據。一個字符對應的數據可以是5~8位。如果一個字符對應的數據不到8位,8251A會在移位轉換成并行數據的時候,自動把他們的高位補成0。 五、系統總體設計方案根據系統設計的要求,對系統設計的總體方案進行論證分析如下:1.獲取8位開關量可使用實驗臺上的8255A可編程并行接口芯片,因為只要獲取8位數據量,只需使用基本輸入和8位數據線,所以將8255A工作在方式0,PA0-PA7接實驗臺上的8位開關量。2.當使用串口進行數據傳送時,雖然同步通信速度遠遠高于異步通信,可達500kbit/s,但由于其需要有一個時鐘來實現發送端和接收端之間的同步,硬件電路復雜,通常計算機之間的通信只采用異步通信。3.由于8251A本身沒有時鐘,需要外部提供,所以本設計中使用實驗臺上的8253芯片的計數器2來實現。4:顯示和鍵盤輸入均使用DOS功能調用來實現。設計思路框圖,如下圖所示: 六、硬件設計硬件電路主要分為8位開關量數據獲取電路,串行通信數據發送電路,串行通信數據接收電路三個部分。1.8位開關量數據獲取電路該電路主要是利用8255并行接口讀取8位乒乓開關的數據。此次設計在獲取8位開關數據量時采用8255令其工作在方式0,A口輸入8位數據,CS#接實驗臺上CS1口,對應端口為280H-283H,PA0-PA7接8個開關。2.串行通信電路串行通信電路本設計中8253主要為8251充當頻率發生器,接線如下圖所示。
上傳時間: 2013-12-19
上傳用戶:小火車啦啦啦
P C B 可測性設計布線規則之建議― ― 從源頭改善可測率PCB 設計除需考慮功能性與安全性等要求外,亦需考慮可生產與可測試。這里提供可測性設計建議供設計布線工程師參考。1. 每一個銅箔電路支點,至少需要一個可測試點。如無對應的測試點,將可導致與之相關的開短路不可檢出,并且與之相連的零件會因無測試點而不可測。2. 雙面治具會增加制作成本,且上針板的測試針定位準確度差。所以Layout 時應通過Via Hole 盡可能將測試點放置于同一面。這樣就只要做單面治具即可。3. 測試選點優先級:A.測墊(Test Pad) B.通孔(Through Hole) C.零件腳(Component Lead) D.貫穿孔(Via Hole)(未Mask)。而對于零件腳,應以AI 零件腳及其它較細較短腳為優先,較粗或較長的引腳接觸性誤判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板彎變形,影響測點精準度,制作治具需特殊處理。5. 避免將測點置于SMT 之PAD 上,因SMT 零件會偏移,故不可靠,且易傷及零件。6. 避免使用過長零件腳(>170mil(4.3mm))或過大的孔(直徑>1.5mm)為測點。7. 對于電池(Battery)最好預留Jumper,在ICT 測試時能有效隔離電池的影響。8. 定位孔要求:(a) 定位孔(Tooling Hole)直徑最好為125mil(3.175mm)及其以上。(b) 每一片PCB 須有2 個定位孔和一個防呆孔(也可說成定位孔,用以預防將PCB反放而導致機器壓破板),且孔內不能沾錫。(c) 選擇以對角線,距離最遠之2 孔為定位孔。(d) 各定位孔(含防呆孔)不應設計成中心對稱,即PCB 旋轉180 度角后仍能放入PCB,這樣,作業員易于反放而致機器壓破板)9. 測試點要求:(e) 兩測點或測點與預鉆孔之中心距不得小于50mil(1.27mm),否則有一測點無法植針。以大于100mil(2.54mm)為佳,其次是75mil(1.905mm)。(f) 測點應離其附近零件(位于同一面者)至少100mil,如為高于3mm 零件,則應至少間距120mil,方便治具制作。(g) 測點應平均分布于PCB 表面,避免局部密度過高,影響治具測試時測試針壓力平衡。(h) 測點直徑最好能不小于35mil(0.9mm),如在上針板,則最好不小于40mil(1.00mm),圓形、正方形均可。小于0.030”(30mil)之測點需額外加工,以導正目標。(i) 測點的Pad 及Via 不應有防焊漆(Solder Mask)。(j) 測點應離板邊或折邊至少100mil。(k) 錫點被實踐證實是最好的測試探針接觸點。因為錫的氧化物較輕且容易刺穿。以錫點作測試點,因接觸不良導致誤判的機會極少且可延長探針使用壽命。錫點尤其以PCB 光板制作時的噴錫點最佳。PCB 裸銅測點,高溫后已氧化,且其硬度高,所以探針接觸電阻變化而致測試誤判率很高。如果裸銅測點在SMT 時加上錫膏再經回流焊固化為錫點,雖可大幅改善,但因助焊劑或吃錫不完全的緣故,仍會出現較多的接觸誤判。
上傳時間: 2014-01-14
上傳用戶:cylnpy
微型計算機課程設計論文—通用微機發聲程序的匯編設計 本文講述了在微型計算機中利用可編程時間間隔定時器的通用發聲程序設計,重點講述了程序的發聲原理,節拍的產生,按節拍改變的動畫程序原理,并以設計一個簡單的樂曲評分程序為引子,分析程序設計的細節。關鍵字:微機 8253 通用發聲程序 動畫技術 直接寫屏 1. 可編程時間間隔定時器8253在通用個人計算機中,有一個可編程時間間隔定時器8253,它能夠根據程序提供的計數值和工作方式,產生各種形狀和各種頻率的計數/定時脈沖,提供給系統各個部件使用。本設計是利用計算機控制發聲的原理,編寫演奏樂曲的程序。 在8253/54定時器內部有3個獨立工作的計數器:計數器0,計數器1和計數器2,每個計數器都分配有一個斷口地址,分別為40H,41H和42H.8253/54內部還有一個公用的控制寄存器,端地址為43H.端口地址輸入到8253/54的CS,AL,A0端,分別對3個計數器和控制器尋址. 對8353/54編程時,先要設定控制字,以選擇計數器,確定工作方式和計數值的格式.每計數器由三個引腳與外部聯系,見教材第320頁圖9-1.CLK為時鐘輸入端,GATE為門控信號輸入端,OUT為計數/定時信號輸入端.每個計數器中包含一個16位計數寄存器,這個計數器時以倒計數的方式計數的,也就是說,從計數初值逐次減1,直到減為0為止. 8253/54的三個計數器是分別編程的,在對任一個計數器編程時,必須首先講控制字節寫入控制寄存器.控制字的作用是告訴8253/54選擇哪個計數器工作,要求輸出什么樣的脈沖波形.另外,對8253/54的初始化工作還包括,向選定的計數器輸入一個計數初值,因為這個計數值可以是8為的,也可以是16為的,而8253/5的數據總線是8位的,所以要用兩條輸出指令來寫入初值.下面給出8253/54初始化程序段的一個例子,將計數器2設定為方式3,(關于計數器的工作方式參閱教材第325—330頁)計數初值為65536. MOV AL,10110110B ;選擇計數器2,按方式3工作,計數值是二進制格式 OUT 43H,AL ; j將控制字送入控制寄存器 MOV AL,0 ;計數初值為0 OUT 42H,AL ;將計數初值的低字節送入計數器2 OUT 42H,AL ;將計數初值的高字節送入計數器2 在IBM PC中8253/54的三個時鐘端CLK0,CLK1和CLK2的輸入頻率都是1.1931817MHZ. PC機上的大多數I/O都是由主板上的8255(或8255A)可編程序外圍接口芯片(PPI)管理的.關于8255A的結構和工作原理及應用舉例參閱教材第340—373頁.教材第364頁的”PC/XT機中的揚聲器接口電路”一節介紹了揚聲器的驅動原理,并給出了通用發聲程序.本設計正是基于這個原理,通過編程,控制加到揚聲器上的信號的頻率,奏出樂曲的.2.發聲程序的設計下面是能產生頻率為f的通用發聲程序:MOV AL, 10110110B ;8253控制字:通道2,先寫低字節,后寫高字節 ;方式3,二進制計數OUT 43H, AL ;寫入控制字MOV DX, 0012H ;被除數高位MOV AX, 35DEH ;被除數低位 DIV ID ;求計數初值n,結果在AX中OUT 42H, AL ;送出低8位MOV AL, AHOUT 42H,AL ;送出高8位IN AL, 61H ;讀入8255A端口B的內容MOV AH, AL ;保護B口的原狀態OR AL, 03H ;使B口后兩位置1,其余位保留OUT 61H,AL ;接通揚聲器,使它發聲
上傳時間: 2013-10-17
上傳用戶:sunjet
通用的多電源總線,如VME、VXI 和PCI 總線,都可提供功率有限的3.3V、5V 和±12V(或±24V)電源,如果在這些系統中添加設備(如插卡等),則需要額外的3.3V或5V電源,這個電源通常由負載較輕的-12V電源提供。圖1 電路,將-12V 電壓升壓到15.3V(相對于-12V 電壓),進而得到3.3V 的電源電壓,輸出電流可達300mA。Q2 將3.3V 電壓轉換成適當的電壓(-10.75V)反饋給IC1 的FB 引腳,PWM 升壓控制器可提供1W 的輸出功率,轉換效率為83%。整個電路大約占6.25Cm2的線路板尺寸,適用于依靠臺式PC機電源供電,需要提供1W輸出功率的應用,這種應用中,由于-12V總線電壓限制在1.2W以內,因此需要保證高于83%的轉換效率。由于限流電阻(RSENSE)將峰值電流限制在120mA,N 溝道MOSFET(Q1)可選用廉價的邏輯電平驅動型場效應管,R1、R2 設置輸出電壓(3.3V 或5V)。IC1 平衡端(Pin5)的反饋電壓高于PGND引腳(Pin7)1.25V,因此:VFB = -12V + 1.25V = - 10.75V選擇電阻R1后,可確定:I2 = 1.25V / R1 = 1.25V / 12.1kΩ = 103μA可由下式確定R2:R2 = (VOUT - VBE)/ I2 =(3.3V - 0.7V)/ 103μA = 25.2 kΩ圖1 中,IC1 的開關頻率允許通過外部電阻設置,頻率范圍為100kHz 至500kHz,有利于RF、數據采集模塊等產品的設計。當選擇較高的開關頻率時,能夠保證較高的轉換效率,并可選用較小的電感和電容。為避免電流倒流,可在電路中增加一個與R1串聯的二極管。
上傳時間: 2013-10-17
上傳用戶:jixingjie