碼元定時恢復(位同步)技術是數(shù)字通信中的關鍵技術。位同步信號本身的抖動、錯位會直接降低通信設備的抗干擾性能,使誤碼率上升,甚至會使傳輸遭到完全破壞。尤其對于突發(fā)傳輸系統(tǒng),快速、精確的定時同步算法是近年來研究的一個焦點。本文就是以Inmarsat GES/AES數(shù)據(jù)接收系統(tǒng)為背景,研究了突發(fā)通信傳輸模式下的全數(shù)字接收機中位同步方法,并予以實現(xiàn)。 本文系統(tǒng)地論述了位同步原理,在此基礎上著重研究了位同步的系統(tǒng)結構、碼元定時恢復算法以及衡量系統(tǒng)性能的各項指標,為后續(xù)工作奠定了基礎。 首先根據(jù)衛(wèi)星系統(tǒng)突發(fā)信道傳輸?shù)奶攸c分析了傳統(tǒng)位同步方法在突發(fā)系統(tǒng)中的不足,接下來對Inmarsat系統(tǒng)的短突發(fā)R信道和長突發(fā)T信道的調制方式和幀結構做了細致的分析,并在Agilent ADS中進行了仿真。 在此基礎上提出了一種充分利用報頭前導比特信息的,由滑動平均、閾值判斷和累加求極值組成的快速報頭時鐘捕獲方法,此方法可快速精準地完成短突發(fā)形式下的位同步,并在FPGA上予以實現(xiàn),效果良好。 在長突發(fā)形式下的報頭時鐘捕獲后還需要對后續(xù)數(shù)據(jù)進行位同步跟蹤,在跟蹤過程中本論文首先用DSP Builder實現(xiàn)了插值環(huán)路的位同步算法,進行了Matlab仿真和FPGA實現(xiàn)。并在插值環(huán)路的基礎上做出改進,提出了一種新的高效的基于移位算法的位同步方案并予以FPGA實現(xiàn)。最后將移位算法與插值算法進行了性能比較,證明該算法更適合于本項目中Inmarsat的長突發(fā)信道位同步跟蹤。 論文對兩個突發(fā)信道的位同步系統(tǒng)進行了理論研究、算法設計以及硬件實現(xiàn)的全過程,滿足系統(tǒng)要求。
上傳時間: 2013-04-24
上傳用戶:zukfu
在工業(yè)控制領域,多種現(xiàn)場總線標準共存的局面從客觀上促進了工業(yè)以太網(wǎng)技術的迅速發(fā)展,國際上已經(jīng)出現(xiàn)了HSE、Profinet、Modbus TCP/IP、Ethernet/IP、Ethernet Powerlink、EtherCAT等多種工業(yè)以太網(wǎng)協(xié)議。將傳統(tǒng)的商用以太網(wǎng)應用于工業(yè)控制系統(tǒng)的現(xiàn)場設備層的最大障礙是以太網(wǎng)的非實時性,而實現(xiàn)現(xiàn)場設備間的高精度時鐘同步是保證以太網(wǎng)高實時性的前提和基礎。 IEEE 1588定義了一個能夠在測量和控制系統(tǒng)中實現(xiàn)高精度時鐘同步的協(xié)議——精確時間協(xié)議(Precision Time Protocol)。PTP協(xié)議集成了網(wǎng)絡通訊、局部計算和分布式對象等多項技術,適用于所有通過支持多播的局域網(wǎng)進行通訊的分布式系統(tǒng),特別適合于以太網(wǎng),但不局限于以太網(wǎng)。PTP協(xié)議能夠使異質系統(tǒng)中各類不同精確度、分辨率和穩(wěn)定性的時鐘同步起來,占用最少的網(wǎng)絡和局部計算資源,在最好情況下能達到系統(tǒng)級的亞微級的同步精度。 基于PC機軟件的時鐘同步方法,如NTP協(xié)議,由于其實現(xiàn)機理的限制,其同步精度最好只能達到毫秒級;基于嵌入式軟件的時鐘同步方法,將時鐘同步模塊放在操作系統(tǒng)的驅動層,其同步精度能夠達到微秒級。現(xiàn)場設備間微秒級的同步精度雖然已經(jīng)能滿足大多數(shù)工業(yè)控制系統(tǒng)對設備時鐘同步的要求,但是對于運動控制等需求高精度定時的系統(tǒng)來說,這仍然不夠。基于嵌入式軟件的時鐘同步方法受限于操作系統(tǒng)中斷響應延遲時間不一致、晶振頻率漂移等因素,很難達到亞微秒級的同步精度。 本文設計并實現(xiàn)了一種基于FPGA的時鐘同步方法,以IEEE 1588作為時鐘同步協(xié)議,以Ethernet作為底層通訊網(wǎng)絡,以嵌入式軟件形式實現(xiàn)TCP/IP通訊,以數(shù)字電路形式實現(xiàn)時鐘同步模塊。這種方法充分利用了FPGA的特點,通過準確捕獲報文時間戳和動態(tài)補償晶振頻率漂移等手段,相對于嵌入式軟件時鐘同步方法實現(xiàn)了更高精度的時鐘同步,并通過實驗驗證了在以集線器互連的10Mbps以太網(wǎng)上能夠達到亞微秒級的同步精度。
上傳時間: 2013-07-28
上傳用戶:heart520beat
頻率是電子技術領域內的一個基本參數(shù),同時也是一個非常重要的參數(shù)。穩(wěn)定的時鐘在高性能電子系統(tǒng)中有著舉足輕重的作用,直接決定系統(tǒng)性能的優(yōu)劣。隨著電子技術的發(fā)展,測頻系統(tǒng)使用時鐘的提高,測頻技術有了相當大的發(fā)展,但不管是何種測頻方法,±1個計數(shù)誤差始終是限制測頻精度進一步提高的一個重要因素。 本設計闡述了各種數(shù)字測頻方法的優(yōu)缺點。通過分析±1個計數(shù)誤差的來源得出了一種新的測頻方法:檢測被測信號,時基信號的相位,當相位同步時開始計數(shù),相位再次同步時停止計數(shù),通過相位同步來消除計數(shù)誤差,然后再通過運算得到實際頻率的大小。根據(jù)M/T法的測頻原理,已經(jīng)出現(xiàn)了等精度的測頻方法,但是還存在±1的計數(shù)誤差。因此,本文根據(jù)等精度測頻原理中閘門時間只與被測信號同步,而不與標準信號同步的缺點,通過分析已有等精度澳孽頻方法所存在±1個計數(shù)誤差的來源,采用了全同步的測頻原理在FPGA器件上實現(xiàn)了全同步數(shù)字頻率計。根據(jù)全同步數(shù)字頻率計的測頻原理方框圖,采用VHDL語言,成功的編寫出了設計程序,并在MAX+PLUS Ⅱ軟件環(huán)境中,對編寫的VHDL程序進行了仿真,得到了很好的效果。最后,又討論了全同步頻率計的硬件設計并給出了電路原理圖和PCB圖。對構成全同步數(shù)字頻率計的每一個模塊,給出了較詳細的設計方法和完整的程序設計以及仿真結果。
標簽: FPGA 數(shù)字頻率計
上傳時間: 2013-04-24
上傳用戶:qqoqoqo
研究以MCS-96系列80C196KB單片機為基礎,結合外圍器件來實現(xiàn)對可控硅三相全控橋的觸發(fā)控制。采用鎖相環(huán)技術及過零觸發(fā)的方法,實現(xiàn)觸發(fā)脈沖與電源信號(線電壓)的同步,提高了觸發(fā)器的抗干擾能力,
上傳時間: 2013-04-24
上傳用戶:fredguo
·永磁交流伺服系統(tǒng)的驅動器經(jīng)歷了模擬式、模擬數(shù)字混合式的發(fā)展后,目前已經(jīng)進入了全數(shù)字的時代。全數(shù)字伺服驅動器不僅克服了模擬式伺服的分散性大、零漂、低可靠性等缺點,還充分發(fā)揮了數(shù)字控制在控制精度上的優(yōu)勢和控制方法的靈活,使伺服驅動器不僅結構簡單,而且性能更加可靠。現(xiàn)在,高性能的伺服系統(tǒng)大多數(shù)采用永磁交流伺服系統(tǒng),其中包括永磁同步交流伺服電動機和全數(shù)字交流永磁同步伺服驅動器兩部分。后者由兩部分組成:驅動
上傳時間: 2013-04-24
上傳用戶:zhangyi99104144
·西門子變頻器6SE70、整流單元、6RA70、440等調試參數(shù)
上傳時間: 2013-06-06
上傳用戶:ccsdebug
·永磁同步電機伺服系統(tǒng)功率主回路的設計
標簽: 永磁同步電機 伺服系統(tǒng) 主回路 功率
上傳時間: 2013-06-03
上傳用戶:glitter
·基于Matlab/Simulink 的永磁同步電機(PMSM )矢量控制仿真
上傳時間: 2013-07-06
上傳用戶:luopoguixiong
·年前移植了一下TI的永磁同步電機程序,編碼器速度閉環(huán)。程序的改動都作了標注, 貢獻出來供大家參考。說明: 省線式編碼器,電機先開環(huán),等到Z信號后再速度閉環(huán)。 (電機編碼器有點問題,才這樣)注意: 這只是一個試驗程序, 不具備商用功能。
上傳時間: 2013-07-31
上傳用戶:thinode
·摘要: 采用DSP處理器實現(xiàn)永磁同步電機變頻調速系統(tǒng).該系統(tǒng)由主電路、控制和輔助電路構成.主電路中逆變器采用IGBT功率模塊.控制電路以TMS320F240芯片為核心,將系統(tǒng)控制、通訊、顯示與保護,系統(tǒng)參數(shù)、故障等信息保存在芯片存貯器中.輔助電路由輔助開關電源、驅動及電流電壓檢測電路組成.系統(tǒng)初始化后進入由鍵盤、顯示、SCI、故障處理等模塊組成的后臺程序.而前臺程序主要進行內外兩環(huán)的數(shù)
標簽: DSP 永磁同步電機 變頻調速系統(tǒng) 仿真
上傳時間: 2013-04-24
上傳用戶:laozhanshi111