While simplicity and high effi ciency (for cool running) areno longer optional features in isolated power supplies, itis traditionally diffi cult to achieve both. Achieving higheffi ciency often requires the use of advanced topologiesand home-brewed secondary synchronous rectifi cationschemes once reserved only for higher power applications.This only adds to the parts count and to the designcomplexity associated with the reference and optocouplercircuits typically used to maintain isolation. Fortunately, abreakthrough IC makes it possible to achieve both high efficiency and simplicity in a synchronous fl yback topology.The LT®3825 simplifi es and improves the performance oflow voltage, high current fl yback supplies by providingprecise synchronous rectifi er timing and eliminating theneed for optocoupler feedback while maintaining excellentregulation and superior loop response.
To this day, Power over Ethernet (PoE) continues to gainpopularity in today’s networking world. The 12.95Wdelivered to the Powered Device (PD) input supplied bythe Power Sourcing Equipment (PSE) is a universal supply.Each PD provides its own DC/DC conversion from anominal 48V supply, thus eliminating the need for a correctvoltage wall adapter. However, higher power devicescan not take advantage of standard PoE because of itspower limitations, and must rely on a large wall adapteras their primary supply. The new LTC4268-1 breaks thispower barrier by allowing for power of up to 35W for suchpower-hungry 2-pair PoE applications. The LTC4268-1provides a complete solution by integrating a high powerPD interface control with an isolated fl yback controller.
為了有效地提升鉛酸蓄電池的使用壽命,同時實現(xiàn)對充電過程的監(jiān)控,設(shè)計出一種用單片機(jī)控制的36 V鉛酸蓄電池充電電源。本電路采用反激式拓?fù)洌B續(xù)電流工作模式,電源管理IC設(shè)計在電源的副邊,由ELAN公司的EM78P258N單片機(jī)模擬,是用可編程器件模擬電源管理IC,實現(xiàn)智能電源低成本化的一次成功嘗試,通過對單片機(jī)的軟件設(shè)計實現(xiàn)了充電電源的狀態(tài)顯示、充電時間控制、報警、過溫保護(hù)、過壓保護(hù)、過流保護(hù)等功能。本充電器真正的實現(xiàn)了鉛酸蓄電池的三段式充電過程,其最高輸出功率可達(dá)90 W,效率約85%,成本不到20元,具有很高的市場競爭力。
Abstract: In order to extend the life of lead-acid battery efficiently and supervise the charging process meanwhile, a 36V lead-acid battery charge powe supply controlled by microcontroller is designed. The charger is flyback switching power supply and works in CCM mode. A EM78P258N microcontroller made by ELAN microelectronics corporation is used as power management IC which is designed at the secondary circuit. The project is a successful attempt to low-cost intelligent power used microcontroller simulating power management IC. The charger also has the functions of the status reveal, charge time control, alarming, thermal protect, current limit and overvoltage protect by the software design. The circuit actually implements the three-step charge process, whose power is up to 90W and whose efficiency can get 85%. The net cost of this charger is less than 20 RMB, so that the charger is of powerful market competitiveness.