介紹了一種多運動目標檢測算法及序列圖像的仿真效果,同時對多運動目標檢測后的二值圖像進行了連通成分標記袁最后根據標記結果在原圖像中準確地框定了各運動目標。關鍵字 多運動目標 跟蹤 序列圖像 連通成分標記
上傳時間: 2013-10-29
上傳用戶:nanfeicui
ST 公司的STM32TS60 是集成了I2C,SPI,UART 和USB 接口的數字電阻型多觸摸屏控制器, 能同時跟蹤多達10 個單獨的觸摸,分辨率達0.17mm,觸摸屏掃描速率達125 Hz 到 250 Hz, 主要用于游戲機,智能手機,PMP,PND,MID 和筆記本電腦.本文介紹STM32TS60 主要特 性,2.5”-6”屏單器件應用電路。
上傳時間: 2013-10-21
上傳用戶:dingdingcandy
本章介紹dsPIC30F器件系列的看門狗定時器(WDT)和低功耗模式。dsPIC DSC 器件有兩種低功耗模式,可以通過執行PWRSAV指令進入:• 休眠模式:CPU、系統時鐘源和任何依靠系統時鐘源工作的外設都被禁止。這是器件的最低功耗模式。• 空閑模式:CPU 被禁止,但是系統時鐘源繼續工作。外設繼續工作,但可以有選擇地禁止。WDT在使能時使用內部LPRC 時鐘源工作,而且如果WDT沒有被軟件清零,它可以通過復位器件來檢測系統軟件的異常情況。可以使用WDT后分頻器選擇不同的WDT超時周期。WDT也可用于將器件從休眠或空閑模式喚醒。
上傳時間: 2014-02-01
上傳用戶:金苑科技
6.1 存儲器概述1、存儲器定義 在微機系統中凡能存儲程序和數據的部件統稱為存儲器。2、存儲器分類 微機系統中的存儲器分為內存和外存兩類。3、內存儲器的組成 微機系統中的存儲器由半導體存儲器芯片組成。 單片機內部有存儲器,當單片機內部的存儲器不夠用時,可以外擴存儲器。外擴的存儲器就是由半導體存儲器芯片組成的。 當用半導體存儲器芯片組成內存時必須滿足個要求:①每個存儲單元一定要有8個位。②存儲單元的個數滿足系統要求。注意:內存的容量是指它所含存儲單元的個數(每個存儲單元一定要有8個位,可以存儲8位二進制信息)。6.2 半導體存儲器由于集成工藝水平的限制,一個半導體存儲器芯片上所集成的單元個數和每個單元的位數有限,用它構成內存時必須滿足:內存容量和一個存儲單元有8個位的要求,因此內存常常由多個半導體存儲器芯片構成。 半導體存儲器芯片的存儲容量是指其上所含的基本存儲電路的個數,用單元個數×位數表示。掌握:① 已知內存容量和半導體存儲器芯片的容量,求用半導體存儲器芯片構成內存時需要的芯片個數。② 內存的容量=末地址—首地址+1 半導體存儲器芯片分成ROM和RAM兩類。6.2.1 ROM芯片6.2.2 RAM芯片6.3 MCS-51單片機存儲器擴展 在微機系統中存儲器是必不可少。MCS51系列單片機內部的存儲器不夠用時需要外擴半導體存儲器芯片,外擴的半導體存儲器芯片與MCS51系列單片機通過三總線交換信息。二者連接時必須考慮如下問題:1.二者地址線、數據線、控制線的連接。2.工作速度的匹配。CPU在取指令和存儲器讀或寫操作時,是有固定時序的,用戶要根據這些來確定對存儲器存取速度的要求,或在存儲器已經確定的情況下,考慮是否需要Tw周期,以及如何實現。3.片選信號的產生。目前生產的存儲器芯片,單片的容量仍然是有限的,通常總是要由許多片才能組成一個存儲器,這里就有一個如何產生片選信號的問題。4.CPU的驅動能力 。在設計CPU芯片時,一般考慮其輸出線的直流負載能力,為帶一個TTL負載。現在的存儲器一般都為MOS電路,直流負載很小,主要的負載是電容負載,故在小型系統中,CPU是可以直接與存儲器相連的,而較大的系統中,若CPU的負載能力不能滿足要求,可以(就要考慮CPU能否帶得動,需要時就要加上緩沖器,)由緩沖器的輸出再帶負載。6.3.1 ROM芯片的擴展6.3.2 RAM芯片的擴展
標簽: 存儲器接口
上傳時間: 2013-11-22
上傳用戶:moerwang
并行接口電路:微處理器與I/O設備進行數據傳輸時均需經過接口電路實現系統與設備互連的匹配。并行接口電路中每個信息位有自己的傳輸線,一個數據字節各位可并行傳送,速度快,控制簡單。由于電氣特性的限制,傳輸距離不能太長。8255A是通用的可編程并行接口芯片,功能強,使用靈活。適合一些并行輸入/輸出設備的使用。8255A并行接口邏輯框圖三個獨立的8位I/O端口,口A、口B、口C。口A有輸入、輸出鎖存器及輸出緩沖器。口B與口C有輸入、輸出緩沖器及輸出鎖存器。在實現高級的傳輸協議時,口C的8條線分為兩組,每組4條線,分別作為口A與口B在傳輸時的控制信號線。口C的8條線可獨立進行置1/置0的操作。口A、口B、口C及控制字口共占4個設備號。8255A并行接口的控制字工作模式選擇控制字:口A有三種工作模式,口B有二種工作模式。口C獨立使用時只有一個工作模式,與口A、口B配合使用時,作為控制信號線。三種工作模式命名為:模式0、模式1及模式2。模式 0 為基本I/O端口,模式1為帶選通的I/O端口,模式 2 為帶選通的雙向I/O端口。口A可工作在三種模式下,口B可工作在模式 0與模式 1下,口C可工作在模式0下或作為控制線配合口A、口B工作。
上傳時間: 2013-11-07
上傳用戶:xitai
提出了一種改進的LSM-ALSM子空間模式識別方法,將LSM的旋轉策略引入ALSM,使子空間之間互不關聯的情況得到改善,提高了ALSM對相似樣本的區分能力。討論中以性能函數代替經驗函數來確定拒識規則的參數,實現了識別率、誤識率與拒識率之間的最佳平衡;通過對有限字符集的實驗結果表明,LSM-ALSM算法有效地改善了分類器的識別率和可靠性。關 鍵 詞 學習子空間; 性能函數; 散布矩陣; 最小描述長度在子空間模式識別方法中,一個線性子空間代表一個模式類別,該子空間由反映類別本質的一組特征矢量張成,分類器根據輸入樣本在各子空間上的投影長度將其歸為相應的類別。典型的子空間算法有以下三種[1, 2]:CLAFIC(Class-feature Information Compression)算法以相關矩陣的部分特征向量來構造子空間,實現了特征信息的壓縮,但對樣本的利用為一次性,不能根據分類結果進行調整和學習,對樣本信息的利用不充分;學習子空間方法(Leaning Subspace Method, LSM)通過旋轉子空間來拉大樣本所屬類別與最近鄰類別的距離,以此提高分類能力,但對樣本的訓練順序敏感,同一樣本訓練的順序不同對子空間構造的影響就不同;平均學習子空間算法(Averaged Learning Subspace Method, ALSM)是在迭代訓練過程中,用錯誤分類的樣本去調整散布矩陣,訓練結果與樣本輸入順序無關,所有樣本平均參與訓練,其不足之處是各模式的子空間之間相互獨立。針對以上問題,本文提出一種改進的子空間模式識別方法。子空間模式識別的基本原理1.1 子空間的分類規則子空間模式識別方法的每一類別由一個子空間表示,子空間分類器的基本分類規則是按矢量在各子空間上的投影長度大小,將樣本歸類到最大長度所對應的類別,在類x()iω的子空間上投影長度的平方為()211,2,,()argmax()jMTkkjpg===Σx (1)式中 函數稱為分類函數;為子空間基矢量。兩類的分類情況如圖1所示。
上傳時間: 2013-12-25
上傳用戶:熊少鋒
摘 要:單片機多機通訊一般采用串行總線方式,但在通訊距離短,通訊數據量大,通訊速率高的場合也會用到多機并行通訊。本文介紹一種采用簡單邏輯電路實現單片機多機并行通訊的方法。關鍵詞:并行通訊,三態緩沖寄存器,雙端口存儲器,總線隔離1、 簡介本文介紹的單片機多機并行通訊系統,使用89C51作為主機,多片89C2051作為從機。(89C2051為20腳300MIL封裝,帶有2K FLASH E2PROM的單片機,除了少了兩個并口外,具備MCS-51系列單片機所有功能。因為其體積小,功能強,必將在單片機應用領域內廣泛使用)。這種并行通訊方法適用于在多站點,多層次的檢測和控制系統中充當通信控制器的角色;也適合于用作單片機串行口擴充電路。
上傳時間: 2013-10-31
上傳用戶:hxy200501
pic單片機實用教程(提高篇)以介紹PIC16F87X型號單片機為主,并適當兼顧PIC全系列,共分9章,內容包括:存儲器;I/O端口的復位功能;定時器/計數器TMR1;定時器TMR2;輸入捕捉/輸出比較/脈寬調制CCP;模/數轉換器ADC;通用同步/異步收發器USART;主控同步串行端口MSSP:SPI模式和I2C模式。突出特點:通俗易懂、可讀性強、系統全面、學練結合、學用并重、實例豐富、習題齊全。<br>本書作為Microchip公司大學計劃選擇用書,可廣泛適用于初步具備電子技術基礎和計算機知識基礎的學生、教師、單片機愛好者、電子制作愛好者、電器維修人員、電子產品開發設計者、工程技術人員閱讀。本教程全書共分2篇,即基礎篇和提高篇,分2冊出版,以適應不同課時和不同專業的需要,也為教師和讀者增加了一種可選方案。 第1章 EEPROM數據存儲器和FIASH程序存儲器1.1 背景知識1.1.1 通用型半導體存儲器的種類和特點1.1.2 PIC單片機內部的程序存儲器1.1.3 PIC單片機內部的EEPROM數據存儲器1.1.4 PIC16F87X內部EEPROM和FIASH操作方法1.2 與EEPROM相關的寄存器1.3 片內EEPROM數據存儲器結構和操作原理1.3.1 從EEPROM中讀取數據1.3.2 向EEPROM中燒寫數據1.4 與FLASH相關的寄存器1.5 片內FLASH程序存儲器結構和操作原理1.5.1 讀取FLASH程序存儲器1.5.2 燒寫FLASH程序存儲器1.6 寫操作的安全保障措施1.6.1 寫入校驗方法1.6.2 預防意外寫操作的保障措施1.7 EEPROM和FLASH應用舉例1.7.1 EEPROM的應用1.7.2 FIASH的應用思考題與練習題第2章 輸入/輸出端口的復合功能2.1 RA端口2.1.1 與RA端口相關的寄存器2.1.2 電路結構和工作原理2.1.3 編程方法2.2 RB端口2.2.1 與RB端口相關的寄存器2.2.2 電路結構和工作原理2.2.3 編程方法2.3 RC端口2.3.1 與RC端口相關的寄存器2.3.2 電路結構和工作原理2.3.3 編程方法2.4 RD端口2.4.1 與RD端口相關的寄存器2.4.2 電路結構和工作原理2.4.3 編程方法2.5 RE端口2.5.1 與RE端口相關的寄存器2.5.2 電路結構和工作原理2.5.3 編程方法2.6 PSP并行從動端口2.6.1 與PSP端口相關的寄存器2.6.2 電路結構和工作原理2.7 應用舉例思考題與練習題第3章 定時器/計數器TMR13.1 定時器/計數器TMR1模塊的特性3.2 定時器/計數器TMR1模塊相關的寄存器3.3 定時器/計數器TMR1模塊的電路結構3.4 定時器/計數器TMR1模塊的工作原理3.4.1 禁止TMR1工作3.4.2 定時器工作方式3.4.3 計數器工作方式3.4.4 TMR1寄存器的賦值與復位3.5 定時器/計數器TMR1模塊的應用舉例思考題與練習題第4章 定時器TMR24.1 定時器TMR2模塊的特性4.2 定時器TMR2模塊相關的寄存器4.3 定時器TMR2模塊的電路結構4.4 定時器TMR2模塊的工作原理4.4.1 禁止TMR2工作4.4.2 定時器工作方式4.4.3 寄存器TMR2和PR2以及分頻器的復位4.4.4 TMR2模塊的初始化編程4.5 定時器TMR2模塊的應用舉例思考題與練習題第5章 輸入捕捉/輸出比較/脈寬調制CCP5.1 輸入捕捉工作模式5.1.1 輸入捕捉摸式相關的寄存器5.1.2 輸入捕捉模式的電路結構5.1.3 輸入捕捉摸式的工作原理5.1.4 輸入捕捉摸式的應用舉例5.2 輸出比較工作模式5.2.1 輸出比較模式相關的寄存器5.2.2 輸出比較模式的電路結構5.2.3 輸出比較模式的工作原理5.2.4 輸出比較模式的應用舉例5.3 脈寬調制輸出工作模式5.3.1 脈寬調制模式相關的寄存器5.3.2 脈寬調制模式的電路結構5.3.3 脈寬調制模式的工作原理5.3.4 脈定調制模式的應用舉例5.4 兩個CCP模塊之間相互關系思考題與練習題第6章 模/數轉換器ADC6.1 背景知識6.1.1 ADC種類與特點6.1.2 ADC器件的工作原理6.2 PIC16F87X片內ADC模塊6.2.1 ADC模塊相關的寄存器6.2.2 ADC模塊結構和操作原理6.2.3 ADC模塊操作時間要求6.2.4 特殊情況下的A/D轉換6.2.5 ADC模塊的轉換精度和分辨率6.2.6 ADC模塊的內部動作流程和傳遞函數6.2.7 ADC模塊的操作編程6.3 PIC16F87X片內ADC模塊的應用舉例思考題與練習題第7章 通用同步/異步收發器USART7.1 串行通信的基本概念7.1.1 串行通信的兩種基本方式7.1.2 串行通信中數據傳送方向7.1.3 串行通信中的控制方式7.1.4 串行通信中的碼型、編碼方式和幀結構7.1.5 串行通信中的檢錯和糾錯方式7.1.6 串行通信組網方式7.1.7 串行通信接口電路和參數7.1.8 串行通信的傳輸速率7.2 PIC16F87X片內通用同步/異步收發器USART模塊7.2.1 與USART模塊相關的寄存器7.2.2 USART波特率發生器BRG7.2.3 USART模塊的異步工作方式7.2.4 USART模塊的同步主控工作方式7.2.5 USART模塊的同步從動工作方式7.3 通用同步/異步收發器USART的應用舉例思考題與練習題第8章 主控同步串行端口MSSP——SPI模式8.1 SPI接口的背景知識8.1.1 SPI接口信號描述8.1.2 基于SPI的系統構成方式8.1.3 SPI接口工作原理8.1.4 兼容的MicroWire接口8.2 PIC16F87X的SPI接口8.2.1 SPI接口相關的寄存器8.2.2 SPI接口的結構和操作原理8.2.3 SPI接口的主控方式8.2.4 SPI接口的從動方式8.3 SPI接口的應用舉例思考題與練習題第9章 主控同步串行端口MSSP——I(平方)C模式9.1 I(平方)C總線的背景知識9.1.1 名詞術語9.1.2 I(平方)C總線的技術特點9.1.3 I(平方)C總線的基本工作原理9.1.4 I(平方)C總線信號時序分析9.1.5 信號傳送格式9.1.6 尋址約定9.1.7 技術參數9.1.8 I(平方)C器件與I(平方)C總線的接線方式9.1.9 相兼容的SMBus總線9.2 與I(平方)C總線相關的寄存器9.3 典型信號時序的產生方法9.3.1 波特率發生器9.3.2 啟動信號9.3.3 重啟動信號9.3.4 應答信號9.3.5 停止信號9.4 被控器通信方式9.4.1 硬件結構9.4.2 被主控器尋址9.4.3 被控器接收——被控接收器9.4.4 被控器發送——被控發送器9.4.5 廣播式尋址9.5 主控器通信方式9.5.1 硬件結構9.5.2 主控器發送——主控發送器9.5.3 主控器接收——主控接收器9.6 多主通信方式下的總線沖突和總線仲裁9.6.1 發送和應答過程中的總線沖突9.6.2 啟動過程中的總線沖突9.6.3 重啟動過程中的總線沖突9.6.4 停止過程中的總線沖突9.7 I(平方)C總線的應用舉例思考題與練習題附錄A 包含文件P16F877.INC附錄B 新版宏匯編器MPASM偽指令總表參考文獻
上傳時間: 2013-12-14
上傳用戶:xiaoyuer
AVR高速嵌入式單片機原理與應用(修訂版)詳細介紹ATMEL公司開發的AVR高速嵌入式單片機的結構;講述AVR單片機的開發工具和集成開發環境(IDE),包括Studio調試工具、AVR單片機匯編器和單片機串行下載編程;學習指令系統時,每條指令均有實例,邊學習邊調試,使學習者看得見指令流向及操作結果,真正理解每條指令的功能及使用注意事項;介紹AVR系列多種單片機功能特點、實用程序設計及應用實例;作為提高篇,講述簡單易學、適用AVR單片機的高級語言BASCOMAVR及ICC AVR C編譯器。 AVR高速嵌入式單片機原理與應用(修訂版) 目錄 第一章ATMEL單片機簡介1.1ATMEL公司產品的特點11.2AT90系列單片機簡介21.3AT91M系列單片機簡介2第二章AVR單片機系統結構2.1AVR單片機總體結構42.2AVR單片機中央處理器CPU62.2.1結構概述72.2.2通用寄存器堆92.2.3X、Y、Z寄存器92.2.4ALU運算邏輯單元92.3AVR單片機存儲器組織102.3.1可下載的Flash程序存儲器102.3.2內部和外部的SRAM數據存儲器102.3.3EEPROM數據存儲器112.3.4存儲器訪問和指令執行時序112.3.5I/O存儲器132.4AVR單片機系統復位162.4.1復位源172.4.2加電復位182.4.3外部復位192.4.4看門狗復位192.5AVR單片機中斷系統202.5.1中斷處理202.5.2外部中斷232.5.3中斷應答時間232.5.4MCU控制寄存器 MCUCR232.6AVR單片機的省電方式242.6.1休眠狀態242.6.2空閑模式242.6.3掉電模式252.7AVR單片機定時器/計數器252.7.1定時器/計數器預定比例器252.7.28位定時器/計數器0252.7.316位定時器/計數器1272.7.4看門狗定時器332.8AVR單片機EEPROM讀/寫訪問342.9AVR單片機串行接口352.9.1同步串行接口 SPI352.9.2通用串行接口 UART402.10AVR單片機模擬比較器452.10.1模擬比較器452.10.2模擬比較器控制和狀態寄存器ACSR462.11AVR單片機I/O端口472.11.1端口A472.11.2端口 B482.11.3端口 C542.11.4端口 D552.12AVR單片機存儲器編程612.12.1編程存儲器鎖定位612.12.2熔斷位612.12.3芯片代碼612.12.4編程 Flash和 EEPROM612.12.5并行編程622.12.6串行下載662.12.7可編程特性67第三章AVR單片機開發工具3.1AVR實時在線仿真器ICE200693.2JTAG ICE仿真器693.3AVR嵌入式單片機開發下載實驗器SL?AVR703.4AVR集成開發環境(IDE)753.4.1AVR Assembler編譯器753.4.2AVR Studio773.4.3AVR Prog783.5SL?AVR系列組態開發實驗系統793.6SL?AVR*.ASM源文件說明81第四章AVR單片機指令系統4.1指令格式844.1.1匯編指令844.1.2匯編器偽指令844.1.3表達式874.2尋址方式894.3數據操作和指令類型924.3.1數據操作924.3.2指令類型924.3.3指令集名詞924.4算術和邏輯指令934.4.1加法指令934.4.2減法指令974.4.3乘法指令1014.4.4取反碼指令1014.4.5取補指令1024.4.6比較指令1034.4.7邏輯與指令1054.4.8邏輯或指令1074.4.9邏輯異或指令1104.5轉移指令1114.5.1無條件轉移指令1114.5.2條件轉移指令1144.6數據傳送指令1354.6.1直接數據傳送指令1354.6.2間接數據傳送指令1374.6.3從程序存儲器直接取數據指令1444.6.4I/O口數據傳送指令1454.6.5堆棧操作指令1464.7位指令和位測試指令1474.7.1帶進位邏輯操作指令1474.7.2位變量傳送指令1514.7.3位變量修改指令1524.7.4其它指令1614.8新增指令(新器件)1624.8.1EICALL-- 延長間接調用子程序1624.8.2EIJMP--擴展間接跳轉1634.8.3ELPM--擴展裝載程序存儲器1644.8.4ESPM--擴展存儲程序存儲器1644.8.5FMUL--小數乘法1664.8.6FMULS--有符號數乘法1664.8.7FMULSU--有符號小數和無符號小數乘法1674.8.8MOVW--拷貝寄存器字1684.8.9MULS--有符號數乘法1694.8.10MULSU--有符號數與無符號數乘法1694.8.11SPM--存儲程序存儲器170 第五章AVR單片機AT90系列5.1AT90S12001725.1.1特點1725.1.2描述1735.1.3引腳配置1745.1.4結構縱覽1755.2AT90S23131835.2.1特點1835.2.2描述1845.2.3引腳配置1855.3ATmega8/8L1855.3.1特點1865.3.2描述1875.3.3引腳配置1895.3.4開發實驗工具1905.4AT90S2333/44331915.4.1特點1915.4.2描述1925.4.3引腳配置1945.5AT90S4414/85151955.5.1特點1955.5.2AT90S4414和AT90S8515的比較1965.5.3引腳配置1965.6AT90S4434/85351975.6.1特點1975.6.2描述1985.6.3AT90S4434和AT90S8535的比較1985.6.4引腳配置2005.6.5AVR RISC結構2015.6.6定時器/計數器2125.6.7看門狗定時器 2175.6.8EEPROM讀/寫2175.6.9串行外設接口SPI2175.6.10通用串行接口UART2175.6.11模擬比較器 2175.6.12模數轉換器2185.6.13I/O端口2235.7ATmega83/1632285.7.1特點2285.7.2描述2295.7.3ATmega83與ATmega163的比較2315.7.4引腳配置2315.8ATtiny10/11/122325.8.1特點2325.8.2描述2335.8.3引腳配置2355.9ATtiny15/L2375.9.1特點2375.9.2描述2375.9.3引腳配置2395 .10ATmega128/128L2395.10.1特點2405.10.2描述2415.10.3引腳配置2435.10.4開發實驗工具2455.11ATmega1612465.11.1特點2465.11.2描述2475.11.3引腳配置2475.12AVR單片機替代MCS51單片機249第六章實用程序設計6.1程序設計方法2506.1.1程序設計步驟2506.1.2程序設計技術2506.2應用程序舉例2516.2.1內部寄存器和位定義文件2516.2.2訪問內部 EEPROM2546.2.3數據塊傳送2546.2.4乘法和除法運算應用一2556.2.5乘法和除法運算應用二2556.2.616位運算2556.2.7BCD運算2556.2.8冒泡分類算法2556.2.9設置和使用模擬比較器2556.2.10半雙工中斷方式UART應用一2556.2.11半雙工中斷方式UART應用二2566.2.128位精度A/D轉換器2566.2.13裝載程序存儲器2566.2.14安裝和使用相同模擬比較器2566.2.15CRC程序存儲的檢查2566.2.164×4鍵區休眠觸發方式2576.2.17多工法驅動LED和4×4鍵區掃描2576.2.18I2C總線2576.2.19I2C工作2586.2.20SPI軟件2586.2.21驗證SLAVR實驗器及AT90S1200的口功能12596.2.22驗證SLAVR實驗器及AT90S1200的口功能22596.2.23驗證SLAVR實驗器及具有DIP40封裝的口功能第七章AVR單片機的應用7.1通用延時子程序2607.2簡單I/O口輸出實驗2667.2.1SLAVR721.ASM 2667.2.2SLAVR722.ASM2677.2.3SLAVR723.ASM2687.2.4SLAVR724.ASM2707.2.5SLAVR725.ASM2717.2.6SLAVR726.ASM2727.2.7SLAVR727.ASM2737.3綜合程序2747.3.1LED/LCD/鍵盤掃描綜合程序2747.3.2LED鍵盤掃描綜合程序2757.3.3在LED上實現字符8的循環移位顯示程序2757.3.4電腦放音機2777.3.5鍵盤掃描程序2857.3.6十進制計數顯示2867.3.7廉價的A/D轉換器2897.3.8高精度廉價的A/D轉換器2947.3.9星星燈2977.3.10按鈕猜數程序2987.3.11漢字的輸入3047.4復雜實用程序3067.4.110位A/D轉換3067.4.2步進電機控制程序3097.4.3測脈沖寬度3127.4.4LCD顯示8字循環3187.4.5LED電腦時鐘3247.4.6測頻率3307.4.7測轉速3327.4.8AT90S8535的A/D轉換334第八章BASCOMAVR的應用8.1基于高級語言BASCOMAVR的單片機開發平臺3408.2BASCOMAVR軟件平臺的安裝與使用3418.3AVR I/O口的應用3458.3.1LED發光二極管的控制3458.3.2簡易手控廣告燈3468.3.3簡易電腦音樂放音機3478.4LCD顯示器3498.4.1標準LCD顯示器的應用3498.4.2簡單游戲機--按鈕猜數3518.5串口通信UART3528.5.1AVR系統與PC的簡易通信3538.5.2PC控制的簡易廣告燈3548.6單總線接口和溫度計3568.7I2C總線接口和簡易IC卡讀寫器359第九章ICC AVR C編譯器的使用9.1ICC AVR的概述3659.1.1介紹ImageCraft的ICC AVR3659.1.2ICC AVR中的文件類型及其擴展名3659.1.3附注和擴充3669.2ImageCraft的ICC AVR編譯器安裝3679.2.1安裝SETUP.EXE程序3679.2.2對安裝完成的軟件進行注冊3679.3ICC AVR導游3689.3.1起步3689.3.2C程序的剖析3699.4ICC AVR的IDE環境3709.4.1編譯一個單獨的文件3709.4.2創建一個新的工程3709.4.3工程管理3719.4.4編輯窗口3719.4.5應用構筑向導3719.4.6狀態窗口3719.4.7終端仿真3719.5C庫函數與啟動文件3729.5.1啟動文件3729.5.2常用庫函數3729.5.3字符類型庫3739.5.4浮點運算庫3749.5.5標準輸入/輸出庫3759.5.6標準庫和內存分配函數3769.5.7字符串函數3779.5.8變量參數函數3799.5.9堆棧檢查函數3799.6AVR硬件訪問的編程3809.6.1訪問AVR的底層硬件3809.6.2位操作3809.6.3程序存儲器和常量數據3819.6.4字符串3829.6.5堆棧3839.6.6在線匯編3839.6.7I/O寄存器3849.6.8絕對內存地址3849.6.9C任務3859.6.10中斷操作3869.6.11訪問UART3879.6.12訪問EEPROM3879.6.13訪問SPI3889.6.14相對轉移/調用的地址范圍3889.6.15C的運行結構3889.6.16匯編界面和調用規則3899.6.17函數返回非整型值3909.6.18程序和數據區的使用3909.6.19編程區域3919.6.20調試3919.7應用舉例*3929.7.1讀/寫口3929.7.2延時函數3929.7.3讀/寫EEPROM3929.7.4AVR的PB口變速移位3939.7.5音符聲程序3939.7.68字循環移位顯示程序3949.7.7鋸齒波程序3959.7.8正三角波程序3969.7.9梯形波程序396附錄1AT89系列單片機簡介398附錄2AT94K系列現場可編程系統標準集成電路401附錄3指令集綜合404附錄4AVR單片機選型表408參 考 文 獻412
上傳時間: 2013-11-08
上傳用戶:xcy122677
隨著單片機性能不斷提高而價格卻不斷下降, 單片機控制在越來越多的領域得以應用。按照傳統的模式, 在整個項目開發過程中, 先根據控制系統要求設計原理圖, PCB 電路圖繪制, 電路板制作, 元器件的焊接, 然后進行軟件編程, 通過仿真器對系統硬件和軟件調試, 最后將調試成功的程序固化到單片機中。這一過程中的主要問題是, 應用程序需要在硬件完成的情況下才能進行調試。雖然有的軟件可以進行模擬調試, 但是對于一些復雜的程序如人機交互程序, 在沒有硬件的時候, 沒有界面的真實感, 給調試帶來困難。在軟硬件的配合中如需要修改硬件, 要重新制板, 在時間和投入上帶來很大的麻煩。縱觀整個過程, 無論是從硬件成本上, 還是從調試周期上, 傳統開發模式的效率有待提高。能否只使用一種開發工具兼顧仿真, 調試, 制板, 以及最大限度的軟件模擬來作為單片機的開發平臺, 用它取代編程器、仿真器、成品前的硬件測試等工作是廣大單片機開發者的夢想。 PROTEUS 軟件介紹為了更加直觀具體地說明Proteus 軟件的實用價值, 本文以一具體的TAXI 的計價器和計時器電路板的設計過程為例。其電路板要實現的功能是:㈠計時功能(相當于時鐘);㈡里程計價功能:兩公里以內價格為4 元, 以后每一公里加0.7 元, 不足一公里取整(如10.3 公里取11 公里);㈢通過鍵盤輸入里程, 模擬計算里程費, 實現Y= (X- 2)*0.7+4 的簡單計算。基于上述功能, 選用ATMEL 公司生產的通用芯片AT89C51 單片機構成應用系統。AT89C51 是內含8 位4K 程序存儲器, 128B 數據存儲器, 2 個定時器/計數器的通用芯片。系統開發環境采用ProteusISIS 6。2.1 計價器模擬系統硬件構成系統主要由一個AT89C51 單片機、74LS373、74LS240、矩陣鍵盤、4 位7 段數碼管等組成。通用AT89C51 單片機芯片作為整個電路的核心部分、74LS373 作為LED 段選控制、74LS240四路反相器則為4 位共陰極7 段數碼管提供位選通信號、矩陣鍵盤輸入控制信號。
上傳時間: 2013-11-09
上傳用戶:木子葉1