石油鉆采設(shè)備通常工作于公共電網(wǎng)所不及的沙漠、海洋和陸地等環(huán)境場(chǎng)合,其中的電站子系統(tǒng)由數(shù)臺(tái)柴油發(fā)電機(jī)組及其相應(yīng)的控制系統(tǒng)構(gòu)成,為石油鉆機(jī)提供動(dòng)力電源(小電網(wǎng)供電系統(tǒng))。石油鉆機(jī)中的鉆井設(shè)備(絞車、泥漿泵和轉(zhuǎn)盤等)由大功率的交流或直流電動(dòng)機(jī)驅(qū)動(dòng),根據(jù)鉆井工藝需要調(diào)節(jié)轉(zhuǎn)速和控制轉(zhuǎn)矩,因此,通常采用VFD變頻調(diào)速系統(tǒng)或SCR直流調(diào)速系統(tǒng)來滿足鉆井工藝要求。眾所周知,電力電子裝置(VFD變頻傳動(dòng)系統(tǒng)和SCR直流傳動(dòng)系統(tǒng))對(duì)電力系統(tǒng)帶來諧波污染,尤其是對(duì)柴油發(fā)電機(jī)組小電網(wǎng)系統(tǒng),諧波污染的問題將更為嚴(yán)重,而且SCR電驅(qū)動(dòng)系統(tǒng)的功率因數(shù)較低,也給小電網(wǎng)系統(tǒng)帶來額外負(fù)擔(dān),影響供電質(zhì)量。因此,對(duì)石油鉆機(jī)電驅(qū)動(dòng)系統(tǒng)進(jìn)行諧波抑制和提高功率因數(shù),顯得尤為重要。本論文正是針對(duì)此問題進(jìn)行的研究和實(shí)踐。 本文對(duì)石油鉆機(jī)電驅(qū)動(dòng)系統(tǒng)的構(gòu)成及其工作原理作了介紹,重點(diǎn)分析了SCR和VFD電驅(qū)動(dòng)系統(tǒng)諧波和無功功率產(chǎn)生的原因及危害,結(jié)合國(guó)內(nèi)外的研究成果,提出對(duì)石油鉆機(jī)電驅(qū)動(dòng)系統(tǒng)進(jìn)行諧波抑制和無功補(bǔ)償?shù)姆桨福⑵鋺?yīng)用到實(shí)際的工程項(xiàng)目中。 石油鉆機(jī)電驅(qū)動(dòng)系統(tǒng)為典型的多諧波源系統(tǒng),本文對(duì)各個(gè)諧波源進(jìn)行了詳細(xì)地分析,并且將多個(gè)諧波源進(jìn)行了合成疊加和計(jì)算,來確定對(duì)電網(wǎng)系統(tǒng)總的影響(電壓畸變率);針對(duì)SCR和VFD電驅(qū)動(dòng)系統(tǒng)的結(jié)構(gòu)和特點(diǎn),提出了對(duì)SCR和VFD系統(tǒng)進(jìn)行諧波抑制和無功功率補(bǔ)償?shù)牟煌鉀Q方案,即:對(duì)SCR電驅(qū)動(dòng)系統(tǒng),采用有源濾波器+動(dòng)態(tài)無功功率補(bǔ)償?shù)霓k法,來消除諧波和改善功率因數(shù);而對(duì)VFD電驅(qū)動(dòng)系統(tǒng),采用有源濾波器來消除諧波即可。 對(duì)石油鉆機(jī)SCR和VFD電驅(qū)動(dòng)系統(tǒng)諧波進(jìn)行的分析和計(jì)算,為兩系統(tǒng)諧波抑制的方案選型和系統(tǒng)優(yōu)化提供了設(shè)計(jì)依據(jù)。本文選用適合于柴油發(fā)電機(jī)組小電網(wǎng)供電系統(tǒng)的有源濾波器(額定電壓為690V)來濾除諧波,在系統(tǒng)結(jié)構(gòu)上,采用一個(gè)諧波源配置一個(gè)有源濾波器的方法,主要解決了CT和PT連接的問題,實(shí)踐證明系統(tǒng)配置合理,濾波效果良好。同時(shí)對(duì)SCR電驅(qū)動(dòng)系統(tǒng)設(shè)計(jì)了動(dòng)態(tài)無功補(bǔ)償裝置,通過實(shí)測(cè)數(shù)據(jù)驗(yàn)證了本文對(duì)SCR電驅(qū)動(dòng)系統(tǒng)的無功進(jìn)行了有效地補(bǔ)償。
上傳時(shí)間: 2013-04-24
上傳用戶:dct灬fdc
現(xiàn)場(chǎng)可編程門陣列(FPGA,F(xiàn)ield Programmable Gate Array)是可編程邏輯器件的一種,它的出現(xiàn)是隨著微電子技術(shù)的發(fā)展,設(shè)計(jì)與制造集成電路的任務(wù)已不完全由半導(dǎo)體廠商來獨(dú)立承擔(dān)。系統(tǒng)設(shè)計(jì)師們更愿意自己設(shè)計(jì)專用集成電路(ASIC,Application Specific Integrated Circuit).芯片,而且希望ASIC的設(shè)計(jì)周期盡可能短,最好是在實(shí)驗(yàn)室里就能設(shè)計(jì)出合適的ASIC芯片,并且立即投入實(shí)際應(yīng)用之中。現(xiàn)在,F(xiàn)PGA已廣泛地運(yùn)用于通信領(lǐng)域、消費(fèi)類電子和車用電子。 本文中涉及的I/O端口模塊是FPGA中最主要的幾個(gè)大模塊之一,它的主要作用是提供封裝引腳到CLB之間的接口,將外部信號(hào)引入FPGA內(nèi)部進(jìn)行邏輯功能的實(shí)現(xiàn)并把結(jié)果輸出給外部電路,并且根據(jù)需要可以進(jìn)行配置來支持多種不同的接口標(biāo)準(zhǔn)。FPGA允許使用者通過不同編程來配置實(shí)現(xiàn)各種邏輯功能,在IO端口中它可以通過選擇配置方式來兼容不同信號(hào)標(biāo)準(zhǔn)的I/O緩沖器電路。總體而言,可選的I/O資源的特性包括:IO標(biāo)準(zhǔn)的選擇、輸出驅(qū)動(dòng)能力的編程控制、擺率選擇、輸入延遲和維持時(shí)間控制等。 本文是關(guān)于FPGA中多標(biāo)準(zhǔn)兼容可編程輸入輸出電路(Input/Output Block)的設(shè)計(jì)和實(shí)現(xiàn),該課題是成都華微電子系統(tǒng)有限公司FPGA大項(xiàng)目中的一子項(xiàng),目的為在更新的工藝水平上設(shè)計(jì)出能夠兼容單端標(biāo)準(zhǔn)的I/O電路模塊;同時(shí)針對(duì)以前設(shè)計(jì)的I/O模塊不支持雙端標(biāo)準(zhǔn)的缺點(diǎn),要求新的電路模塊中擴(kuò)展出雙端標(biāo)準(zhǔn)的部分。文中以低壓雙端差分標(biāo)準(zhǔn)(LVDS)為代表構(gòu)建雙端標(biāo)準(zhǔn)收發(fā)轉(zhuǎn)換電路,與單端標(biāo)準(zhǔn)比較,LVDS具有很多優(yōu)點(diǎn): (1)LVDS傳輸?shù)男盘?hào)擺幅小,從而功耗低,一般差分線上電流不超過4mA,負(fù)載阻抗為100Ω。這一特征使它適合做并行數(shù)據(jù)傳輸。 (2)LVDS信號(hào)擺幅小,從而使得該結(jié)構(gòu)可以在2.5V的低電壓下工作。 (3)LVDS輸入單端信號(hào)電壓可以從0V到2.4V變化,單端信號(hào)擺幅為400mV,這樣允許輸入共模電壓從0.2V到2.2V范圍內(nèi)變化,也就是說LVDS允許收發(fā)兩端地電勢(shì)有±1V的落差。 本文采用0.18μm1.8V/3.3V混合工藝,輔助Xilinx公司FPGA開發(fā)軟件ISE,設(shè)計(jì)完成了可以用于Virtex系列各低端型號(hào)FPGA的IOB結(jié)構(gòu),它有靈活的可配置性和出色的適應(yīng)能力,能支持大量的I/O標(biāo)準(zhǔn),其中包括單端標(biāo)準(zhǔn),也包括雙端標(biāo)準(zhǔn)如LVDS等。它具有適應(yīng)性的優(yōu)點(diǎn)、可選的特性和考慮到被文件描述的硬件結(jié)構(gòu)特征,這些特點(diǎn)可以改進(jìn)和簡(jiǎn)化系統(tǒng)級(jí)的設(shè)計(jì),為最終的產(chǎn)品設(shè)計(jì)和生產(chǎn)打下基礎(chǔ)。設(shè)計(jì)中對(duì)包括20種IO標(biāo)準(zhǔn)在內(nèi)的各電器參數(shù)按照用戶手冊(cè)描述進(jìn)行仿真驗(yàn)證,性能參數(shù)已達(dá)到預(yù)期標(biāo)準(zhǔn)。
標(biāo)簽: FPGA 標(biāo)準(zhǔn) 可編程
上傳時(shí)間: 2013-05-15
上傳用戶:shawvi
由于移動(dòng)環(huán)境的復(fù)雜性,無線信號(hào)在發(fā)送傳輸和接收過程中有很明顯的衰落現(xiàn)象,特別是在高頻無線通信中,多徑衰落或頻率選擇性衰落對(duì)無線信號(hào)的干擾最為嚴(yán)重。通過分集接收技術(shù),Rake接收機(jī)在CDMA移動(dòng)通信系統(tǒng)中抗多徑衰落效果尤為明顯。作為一種新穎的多址接入方式,多載波CDMA充分利用了OFDM最優(yōu)頻率利用率以及CDMA的多址和頻率分集,且系統(tǒng)容量和抗符號(hào)間干擾性能明顯優(yōu)于傳統(tǒng)的單載波CDMA。這些特性使得多載波CDMA成為未來的寬帶無線通信系統(tǒng)最有希望的候選。 @@ 本文研究了一種多載波擴(kuò)頻通信系統(tǒng),介紹了其Rake接收機(jī)工作原理和設(shè)計(jì)思想,進(jìn)行了理論仿真并用FPGA予以實(shí)現(xiàn)。 @@ 本文首先介紹了移動(dòng)通信系統(tǒng)的發(fā)展歷史以及OFDM和CDMA技術(shù)原理,并描述了OFDM和CDMA結(jié)合的三種系統(tǒng)(MC-DS-CDMA、MT-CDMA、MC-CDMA)的原理和系統(tǒng)模型;接著,介紹了目前影響移動(dòng)通信的主要衰落以及Rake接收機(jī)基本原理及其作用。多徑信號(hào)的每路信號(hào)都可能含有可以利用的信息,Rake接收機(jī)就是通過多個(gè)相關(guān)接收器接收多徑信號(hào)中各路信號(hào),通過信道估計(jì)和信道補(bǔ)償消去信道因子的附加相位,并把他們合并在一起,以此來改善信號(hào)的信噪比和系統(tǒng)的可靠性;在此基礎(chǔ)上,論文提出了一種多載波擴(kuò)頻通信系統(tǒng)的實(shí)現(xiàn)方案,并詳細(xì)介紹了其Rake接收機(jī)實(shí)現(xiàn)原理,給出了最大比合并時(shí)各種分徑數(shù)目下系統(tǒng)誤碼率的仿真圖;最后介紹了此方案中Rake接收機(jī)的FPGA硬件實(shí)現(xiàn)設(shè)計(jì)方案及其系統(tǒng) 測(cè)試結(jié)果。@@ 仿真結(jié)果顯示出隨著分集徑數(shù)的增加,系統(tǒng)的誤碼率顯著降低。表明Rake接收機(jī)抗多徑衰落效果顯著,且在多載波CDMA系統(tǒng)中其分集效果更好,實(shí)現(xiàn)相對(duì)簡(jiǎn)單。最終Rake接收機(jī)的FPGA實(shí)現(xiàn)結(jié)果同理論仿真一致,時(shí)序通過,資源耗費(fèi)不大,具有較大的實(shí)用價(jià)值。 @@關(guān)鍵詞:多載波擴(kuò)頻通信,CDMA,Rake接收機(jī),F(xiàn)PGA
上傳時(shí)間: 2013-07-25
上傳用戶:axxsa
隨著現(xiàn)代控制技術(shù)的飛速發(fā)展和傳統(tǒng)工業(yè)改造的逐步實(shí)現(xiàn),能夠獨(dú)立工作的溫度檢測(cè)和顯示系統(tǒng)已經(jīng)應(yīng)用于諸多領(lǐng)域。傳統(tǒng)的溫度監(jiān)測(cè)系統(tǒng)可靠性和實(shí)時(shí)性相對(duì)較差,溫度測(cè)量的精度和準(zhǔn)確度較低,而且大多采用有線方式對(duì)整個(gè)系統(tǒng)進(jìn)行控制,這不利于應(yīng)用的擴(kuò)展。近年來,嵌入式系統(tǒng)和無線通信技術(shù)(特別是短消息業(yè)務(wù))受到遠(yuǎn)程監(jiān)測(cè)領(lǐng)域研究者的密切關(guān)注,成為一個(gè)研究熱點(diǎn)。本文提出了一種將帶有I2C總線的ARM嵌入式微處理器和短消息業(yè)務(wù)(SMS)用于溫度檢測(cè)系統(tǒng)中的方法,實(shí)現(xiàn)了溫度的多點(diǎn)監(jiān)測(cè)。本文的主要研究?jī)?nèi)容如下: (1)多點(diǎn)溫度監(jiān)測(cè)系統(tǒng)硬件設(shè)計(jì)。采用以ARM微處理器LPC2290芯片為核心的嵌入式工控板,通過對(duì)Benq無線通信模塊M22的控制,接收并識(shí)別監(jiān)測(cè)中心發(fā)過來的短消息內(nèi)容,實(shí)現(xiàn)了多點(diǎn)溫度的采集及顯示;采用八個(gè)帶有I2C總線接口的數(shù)字溫度傳感器LM75,組成八點(diǎn)溫度采集電路:利用帶有I2C總線接口的LED驅(qū)動(dòng)器件ZLG7290及共陰式數(shù)碼管為溫度顯示電路,保證了溫度測(cè)量的精度和準(zhǔn)確度。 (2)多點(diǎn)溫度監(jiān)測(cè)系統(tǒng)軟件設(shè)計(jì)。根據(jù)整個(gè)監(jiān)測(cè)系統(tǒng)的特點(diǎn),提出了軟件設(shè)計(jì)的總體思路,并以ADS1.2為集成開發(fā)環(huán)境,將μC/OS-Ⅱ嵌入式操作系統(tǒng)的相關(guān)代碼移植到LPC2290中;采用分層體系思想,使用標(biāo)準(zhǔn)C語言編寫程序,結(jié)合嵌入式操作系統(tǒng)的任務(wù)管理、信號(hào)量等機(jī)制,并調(diào)用相關(guān)的應(yīng)用程序接口函數(shù)(API函數(shù)),設(shè)計(jì)了包括溫度采集、溫度顯示、短消息接收與發(fā)送等多個(gè)子程序。 (3)監(jiān)測(cè)中心軟件設(shè)計(jì)。為了增強(qiáng)系統(tǒng)控制和數(shù)據(jù)管理功能,使用Visual C++6.0及ADO數(shù)據(jù)庫(kù)技術(shù)編寫了監(jiān)測(cè)中心軟件人機(jī)交互界面,通過串口使另一M22無線通信模塊同監(jiān)測(cè)中心上位機(jī)的通信,實(shí)現(xiàn)了在PC機(jī)上發(fā)送短消息指令對(duì)下位機(jī)進(jìn)行遠(yuǎn)程控制,并將接收到的數(shù)據(jù)存儲(chǔ)在Access數(shù)據(jù)庫(kù)中以便分析處理。 嵌入式技術(shù)和短消息業(yè)務(wù)在一定程度上提高了多點(diǎn)溫度監(jiān)測(cè)系統(tǒng)的測(cè)量精度、可靠性、穩(wěn)定性和實(shí)時(shí)性,對(duì)改進(jìn)遠(yuǎn)程監(jiān)測(cè)系統(tǒng)的控制方式和數(shù)據(jù)傳輸方式有一定的意義,也為對(duì)嵌入式應(yīng)用項(xiàng)目的開發(fā)奠定了基礎(chǔ)。
標(biāo)簽: ARM 多點(diǎn) 溫度監(jiān)測(cè) 系統(tǒng)設(shè)計(jì)
上傳時(shí)間: 2013-07-08
上傳用戶:feichengweoayauya
本文研制的數(shù)據(jù)采集器,用于采集導(dǎo)彈過載模擬試車臺(tái)的各種參數(shù),來評(píng)價(jià)導(dǎo)彈在飛行過程中的性能,由于試車臺(tái)是高速旋轉(zhuǎn)體,其工作環(huán)境惡劣,受電磁干擾大,而且設(shè)備要求高,如果遇到設(shè)備故障或設(shè)備事故,其損失相當(dāng)巨大,保證設(shè)備的安全性和可靠性較為困難。 本文在分析數(shù)字通信技術(shù)的基礎(chǔ)上,選用了基于現(xiàn)場(chǎng)可編程邏輯陣列(FPGA)采用脈沖編碼調(diào)制(PCM)通信實(shí)現(xiàn)多路數(shù)據(jù)采集器的設(shè)計(jì),其優(yōu)點(diǎn)是FPGA技術(shù)在數(shù)據(jù)采集器中可以進(jìn)行模塊化設(shè)計(jì),增加了系統(tǒng)的抗干擾性、靈活性和適應(yīng)性,并且可以將整個(gè)PCM通信系統(tǒng)設(shè)計(jì)成可編程序系統(tǒng),用戶只要稍加變更程序,則系統(tǒng)的被測(cè)路數(shù)、幀結(jié)構(gòu)、碼速率、標(biāo)度等均可改變以適應(yīng)任何場(chǎng)合。并且采用合理的糾錯(cuò)和加密編碼能夠?qū)崿F(xiàn)數(shù)據(jù)在傳輸工程中的完整性和安全性。 通過對(duì)PCM通信的特點(diǎn)研究,研制了一套集采集與傳輸?shù)南到y(tǒng)。文章給出了各個(gè)模塊的具體建模與設(shè)計(jì),系統(tǒng)采用的是FPGA技術(shù)來實(shí)現(xiàn)數(shù)據(jù)采集和信號(hào)處理,采用VHDL實(shí)現(xiàn)了數(shù)字復(fù)接器和分接器、編解碼器、調(diào)制與解調(diào)模塊的建模與設(shè)計(jì)。采用基于NiosII實(shí)現(xiàn)串口通訊,構(gòu)建了實(shí)時(shí)性和準(zhǔn)確性通信網(wǎng)絡(luò),實(shí)現(xiàn)了數(shù)據(jù)的采集。 測(cè)試數(shù)據(jù)和數(shù)據(jù)采集的實(shí)驗(yàn)結(jié)果證明,采用FPGA技術(shù)實(shí)現(xiàn)PCM信號(hào)的編碼、傳輸、解碼,能夠有較強(qiáng)的抗干擾性、抗噪聲性能好、差錯(cuò)可控、易加密、易與現(xiàn)代技術(shù)結(jié)合,并且誤碼率較低,要遠(yuǎn)遠(yuǎn)優(yōu)于傳統(tǒng)的方法。
標(biāo)簽: FPGA PCM 通信實(shí)現(xiàn) 多路
上傳時(shí)間: 2013-04-24
上傳用戶:com1com2
介紹的多功能逆變焊機(jī)控制系統(tǒng)是以80C196KC為控制系統(tǒng)核心組成了最小單片機(jī)控制系統(tǒng).文中首先討論了控制系統(tǒng)各部分電路如:脈寬調(diào)制電路、驅(qū)動(dòng)電路、恒值采樣反饋電路、保護(hù)電路、參數(shù)預(yù)置與顯示電路的組成及工作原理.接著介紹了對(duì)于一個(gè)復(fù)雜的控制系統(tǒng)的如何采有模塊化程序設(shè)計(jì)方法來設(shè)計(jì)系統(tǒng)軟件,以及常用的軟件抗干擾措施.最后給出了所設(shè)計(jì)的多功能逆變焊機(jī)系統(tǒng)調(diào)試的試驗(yàn)結(jié)果.
標(biāo)簽: 單片機(jī)控制 多功能 逆變 焊機(jī)
上傳時(shí)間: 2013-04-24
上傳用戶:semi1981
摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問 題。 1) 時(shí)鐘的快速電平切換將給電路帶來的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來的4 倍(如圖1b 所示)。 以前也有人嘗試過用專門的延遲線或邏輯門延時(shí)來達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說, 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過采樣 點(diǎn)依次相差90°相位。通過存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問題, 降低了系統(tǒng)設(shè)計(jì)的難度。
標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用
上傳時(shí)間: 2013-12-17
上傳用戶:xg262122
多路電壓采集系統(tǒng)一、實(shí)驗(yàn)?zāi)康模保煜た删幊绦酒珹DC0809,8253的工作過程,掌握它們的編程方法。2.加深對(duì)所學(xué)知識(shí)的理解并學(xué)會(huì)應(yīng)用所學(xué)的知識(shí),達(dá)到在應(yīng)用中掌握知識(shí)的目的。 二、實(shí)驗(yàn)內(nèi)容與要求1.基本要求通過一個(gè)A/D轉(zhuǎn)換器循環(huán)采樣4路模擬電壓,每隔一定時(shí)間去采樣一次,一次按順序采樣4路信號(hào)。A/D轉(zhuǎn)換器芯片AD0809將采樣到的模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào),轉(zhuǎn)換完成后,CPU讀取數(shù)據(jù)轉(zhuǎn)換結(jié)果,并將結(jié)果送入外設(shè)即CRT/LED顯示,顯示包括電壓路數(shù)和數(shù)據(jù)值。2. 提高要求 (1) 可以實(shí)現(xiàn)循環(huán)采集和選擇采集2種方式。(2)在CRT上繪制電壓變化曲線。 三、實(shí)驗(yàn)報(bào)告要求 1.設(shè)計(jì)目的和內(nèi)容 2.總體設(shè)計(jì) 3.硬件設(shè)計(jì):原理圖(接線圖)及簡(jiǎn)要說明 4.軟件設(shè)計(jì)框圖及程序清單5.設(shè)計(jì)結(jié)果和體會(huì)(包括遇到的問題及解決的方法) 四、總體設(shè)計(jì)設(shè)計(jì)思路如下:1) 4路模擬電壓信號(hào)通過4個(gè)電位器提供0-5V的電壓信號(hào)。2) 選擇ADC0809芯片作為A/D轉(zhuǎn)換器,4路輸入信號(hào)分別接到ADC0809的IN0—IN4通道,每隔一定的時(shí)間采樣一次,采完一路采集下一路,4路電壓循環(huán)采集。3) 利用3個(gè)LED數(shù)碼管顯示數(shù)據(jù),1個(gè)數(shù)碼管用來顯示輸入電壓路數(shù),3個(gè)數(shù)碼管用來顯示電壓采樣值。4) 延時(shí)由8253定時(shí)/計(jì)數(shù)器來實(shí)現(xiàn)。 五、硬件電路設(shè)計(jì)根據(jù)設(shè)計(jì)思路,硬件主要利用了微機(jī)實(shí)驗(yàn)平臺(tái)上的ADC0809模數(shù)轉(zhuǎn)換器、8253定時(shí)/計(jì)數(shù)器以及LED顯示輸出等模塊。電路原理圖如下:1.基本接口實(shí)驗(yàn)板部分1) 電位計(jì)模塊,4個(gè)電位計(jì)輸出4路1-5V的電壓信號(hào)。2) ADC0809模數(shù)轉(zhuǎn)換器,將4路電壓信號(hào)接到IN0-IN3,ADD_A、ADD_B、ADD_C分別接A0、A1、A2,CS_AD接CS0時(shí),4個(gè)采樣通道對(duì)應(yīng)的地址分別為280H—283H。3) 延時(shí)模塊,8253和8255組成延時(shí)電路。8255的PA0接到8253的OUT0,程序中查詢計(jì)數(shù)是否結(jié)束。硬件電路圖如圖1所示。 圖1 基本實(shí)驗(yàn)板上的電路圖實(shí)驗(yàn)板上的LED顯示部分實(shí)驗(yàn)板上主要用到了LED數(shù)碼管顯示電路,插孔CS1用于數(shù)碼管段碼的輸出選通,插孔CS2用于數(shù)碼管位選信號(hào)的輸出選通。電路圖如圖2所示。
上傳時(shí)間: 2013-11-06
上傳用戶:sunchao524
P C B 可測(cè)性設(shè)計(jì)布線規(guī)則之建議― ― 從源頭改善可測(cè)率PCB 設(shè)計(jì)除需考慮功能性與安全性等要求外,亦需考慮可生產(chǎn)與可測(cè)試。這里提供可測(cè)性設(shè)計(jì)建議供設(shè)計(jì)布線工程師參考。1. 每一個(gè)銅箔電路支點(diǎn),至少需要一個(gè)可測(cè)試點(diǎn)。如無對(duì)應(yīng)的測(cè)試點(diǎn),將可導(dǎo)致與之相關(guān)的開短路不可檢出,并且與之相連的零件會(huì)因無測(cè)試點(diǎn)而不可測(cè)。2. 雙面治具會(huì)增加制作成本,且上針板的測(cè)試針定位準(zhǔn)確度差。所以Layout 時(shí)應(yīng)通過Via Hole 盡可能將測(cè)試點(diǎn)放置于同一面。這樣就只要做單面治具即可。3. 測(cè)試選點(diǎn)優(yōu)先級(jí):A.測(cè)墊(Test Pad) B.通孔(Through Hole) C.零件腳(Component Lead) D.貫穿孔(Via Hole)(未Mask)。而對(duì)于零件腳,應(yīng)以AI 零件腳及其它較細(xì)較短腳為優(yōu)先,較粗或較長(zhǎng)的引腳接觸性誤判多。4. PCB 厚度至少要62mil(1.35mm),厚度少于此值之PCB 容易板彎變形,影響測(cè)點(diǎn)精準(zhǔn)度,制作治具需特殊處理。5. 避免將測(cè)點(diǎn)置于SMT 之PAD 上,因SMT 零件會(huì)偏移,故不可靠,且易傷及零件。6. 避免使用過長(zhǎng)零件腳(>170mil(4.3mm))或過大的孔(直徑>1.5mm)為測(cè)點(diǎn)。7. 對(duì)于電池(Battery)最好預(yù)留Jumper,在ICT 測(cè)試時(shí)能有效隔離電池的影響。8. 定位孔要求:(a) 定位孔(Tooling Hole)直徑最好為125mil(3.175mm)及其以上。(b) 每一片PCB 須有2 個(gè)定位孔和一個(gè)防呆孔(也可說成定位孔,用以預(yù)防將PCB反放而導(dǎo)致機(jī)器壓破板),且孔內(nèi)不能沾錫。(c) 選擇以對(duì)角線,距離最遠(yuǎn)之2 孔為定位孔。(d) 各定位孔(含防呆孔)不應(yīng)設(shè)計(jì)成中心對(duì)稱,即PCB 旋轉(zhuǎn)180 度角后仍能放入PCB,這樣,作業(yè)員易于反放而致機(jī)器壓破板)9. 測(cè)試點(diǎn)要求:(e) 兩測(cè)點(diǎn)或測(cè)點(diǎn)與預(yù)鉆孔之中心距不得小于50mil(1.27mm),否則有一測(cè)點(diǎn)無法植針。以大于100mil(2.54mm)為佳,其次是75mil(1.905mm)。(f) 測(cè)點(diǎn)應(yīng)離其附近零件(位于同一面者)至少100mil,如為高于3mm 零件,則應(yīng)至少間距120mil,方便治具制作。(g) 測(cè)點(diǎn)應(yīng)平均分布于PCB 表面,避免局部密度過高,影響治具測(cè)試時(shí)測(cè)試針壓力平衡。(h) 測(cè)點(diǎn)直徑最好能不小于35mil(0.9mm),如在上針板,則最好不小于40mil(1.00mm),圓形、正方形均可。小于0.030”(30mil)之測(cè)點(diǎn)需額外加工,以導(dǎo)正目標(biāo)。(i) 測(cè)點(diǎn)的Pad 及Via 不應(yīng)有防焊漆(Solder Mask)。(j) 測(cè)點(diǎn)應(yīng)離板邊或折邊至少100mil。(k) 錫點(diǎn)被實(shí)踐證實(shí)是最好的測(cè)試探針接觸點(diǎn)。因?yàn)殄a的氧化物較輕且容易刺穿。以錫點(diǎn)作測(cè)試點(diǎn),因接觸不良導(dǎo)致誤判的機(jī)會(huì)極少且可延長(zhǎng)探針使用壽命。錫點(diǎn)尤其以PCB 光板制作時(shí)的噴錫點(diǎn)最佳。PCB 裸銅測(cè)點(diǎn),高溫后已氧化,且其硬度高,所以探針接觸電阻變化而致測(cè)試誤判率很高。如果裸銅測(cè)點(diǎn)在SMT 時(shí)加上錫膏再經(jīng)回流焊固化為錫點(diǎn),雖可大幅改善,但因助焊劑或吃錫不完全的緣故,仍會(huì)出現(xiàn)較多的接觸誤判。
標(biāo)簽: PCB 可測(cè)性設(shè)計(jì) 布線規(guī)則
上傳時(shí)間: 2014-01-14
上傳用戶:cylnpy
文中詳細(xì)地介紹了正交投影子空間跟蹤算法(OPAST),它是一種基于最優(yōu)化問題的方法,保證了每次迭代時(shí)權(quán)向量的正交性,并具有和PAST算法一樣的線性復(fù)雜度,以及與自然冪法(NP)一樣的全局收斂性。然而將其應(yīng)用于盲多用戶檢測(cè)時(shí),在迭代一定次數(shù)后,會(huì)出現(xiàn)誤碼率突然增大現(xiàn)象,這就導(dǎo)致了算法性能的下降,為了解決這一問題,文中提出一種方法,并通過仿真結(jié)果,證明它是行之有效的。
標(biāo)簽: OPAST 算法 多用戶檢測(cè) 中的應(yīng)用
上傳時(shí)間: 2014-11-11
上傳用戶:xaijhqx
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1