遠程監控系統是許多重要場所諸如電力、郵電、銀行、交通、商場等需要信息廣泛交流企業的生產與管理的必備系統。傳統遠程監控系統的實現方式一般都需要自己建設并維護有線或無線網絡,維護費用高,通信距離有限。隨著通信技術的發展,原有的遠程監控系統已經日益不能滿足多方面的要求,我們需要實時性更高,通信距離更遠,成本更低的通信方式,本文就此提出了一種基于GPRS的遠程數據監控系統。 本文的創新點是采用了GPRS技術中的TCP傳輸方式來傳輸監控系統采集的圖像數據,相比傳統有線網絡,在維護成本,通信距離上有了很大的提高,相比傳統無線網絡在實時性,傳輸速率,可靠性上有了明顯的改善。 本論文分幾個部分詳細介紹了課題的研究內容。第一部分主要介紹了課題背景和監控系統的發展歷史及各類監控系統的比較。第二部分描述了本監控系統中遠程終端硬件系統搭建工作,包括各部分器件的選取以及在S3C4480為核心的開發板上擴展出LM9617接口。第三部分描述了以uC/OS操作系統為核心的遠程終端軟件設計流程,包括uC/OS操作系統和FAT16文件系統的移植,LCD顯示驅動, Nand-flash底層驅動的編寫等工作。第四部分詳細說明了本系統圖像采集的具體軟件實現,包括根據實際情況配置CMOS圖像傳感器LM9617的寄存器以及從LM9617中讀取圖像數據然后將數據寫入Nand-flash存儲器的具體過程。第五部分詳細說明了本系統圖像數據傳輸的具體軟件實現,采用的是GPRS企業公網組網方式,包括遠程終端程序設計和監控中心服務器搭建兩部分工作。遠程終端程序設計包括初始化串口通信,將Nand-flash中的圖像數據讀出并通過GPRS模塊GM862發送到監控中心服務器上;監控中心服務器程序設計包括啟動建立并啟動Socket監聽,以及收到連接請求后GPRS通信鏈路的建立。最后分別用TCP和UDP兩種傳輸方式對監控系統進行了測試,證明了GPRS的TCP傳輸方式確實更適合于監控系統。
上傳時間: 2013-07-19
上傳用戶:liuwei6419
本文提出了一種高速Viterbi譯碼器的FPGA實現方案。這種Viterbi譯碼器的設計方案既可以制成高性能的單片差錯控制器,也可以集成到大規模ASIC通信芯片中,作為全數字接收的一部分。 本文所設計的Viterbi譯碼器采用了基四算法,與基二算法相比,其譯碼速率在理論上約提升一倍。加一比一選單元是Viterbi譯碼器最主要的瓶頸所在,本文在加一比一選模塊中采用了全并行結構的設計方法,這種方法雖然增加了硬件的使用面積,卻有效的提高了譯碼器的速率。在幸存路徑管理部分采用了兩路并行回溯的設計方法,與寄存器交換法相比,回溯算法更適用于FPGA開發設計。為了提高譯碼性能,減小譯碼差錯,本文采用較大譯碼深度的回溯算法以保證幸存路徑進行合并。實現了基于FPGA的誤碼測試儀,在FPGA內部完成誤碼驗證和誤碼計數的工作。 與基于軟件實現譯碼過程的DSP芯片不同,FPGA芯片完全采用硬件平臺對Viterbi譯碼器加以實現,這使譯碼速率得到很大的提升。針對于具體的FPGA硬件實現,本文采用了硬件描述語言VHDL來完成設計。通過對譯碼器的綜合仿真和FPGA實現驗證了該方案的可行性。譯碼器的最高譯碼輸出速率可以達到60Mbps。
上傳時間: 2013-04-24
上傳用戶:181992417
卷積碼是無線通信系統中廣泛使用的一種信道編碼方式。Viterbi譯碼算法是一種卷積碼的最大似然譯碼算法,它具有譯碼效率高、速度快等特點,被認為是卷積碼的最佳譯碼算法。本文的主要內容是在FPGA上實現約束長度為9,碼率為1/2,采用軟判決方式的Viterbi譯碼器。 本文首先介紹了卷積碼的基本概念,闡述了Viterbi算法的原理,重點討論了決定Viterbi算法復雜度和譯碼性能的關鍵因素,在此基礎上設計了采用“串-并”結合運算方式的Viterbi譯碼器,并在Altera EP1C20 FPGA芯片上測試通過。本文的主要工作如下: 1.對輸入數據采用了二比特四電平量化的軟判決方式,對歐氏距離的計算方法進行了簡化,以便于用硬件電路方式實現。 2.對ACS運算單元采用了“串-并”結合的運算方式,和全并行的設計相比,在滿足譯碼速度的同時,節約了芯片資源。本文中提出了一種路徑度量值存儲器的組織方式,簡化了控制模塊的邏輯電路,優化了系統的時序。 3.在幸存路徑的選擇輸出上采用了回溯譯碼方法,與傳統的寄存器交換法相比,減少了寄存器的使用,大大降低了功耗和設計的復雜度。 4.本文中設計了一個仿真平臺,采用Modelsim仿真器對設計進行了功能仿真,結果完全正確。同時提出了一種在被測設計內部插入監視器的調試方法,巧妙地利用了Matlab算法仿真程序的輸出結果,提高了追蹤錯誤的效率。 5.該設計在Altera EP1C20 FPGA芯片上通過測試,最大運行時鐘頻率110MHz,最大譯碼輸出速率10.3Mbps。 本文對譯碼器的綜合結果和Altera設計的Viterbi譯碼器IP核進行了性能比較,比較結果證明本文中設計的Viterbi譯碼器具有很高的工程實用價值。
上傳時間: 2013-07-23
上傳用戶:葉山豪
目錄 第1章 概述 1.1 采用C語言提高編制單片機應用程序的效率 1.2 C語言具有突出的優點 1.3 AvR單片機簡介 1.4 AvR單片機的C編譯器簡介 第2章 學習AVR單片機C程序設計所用的軟件及實驗器材介紹 2.1 IAR Enlbedded Workbench IDE C語言編譯器 2.2 AVR Studio集成開發環境 2.3 PonyProg2000下載軟件及SL—ISP下載軟件 2.4 AVR DEM0單片機綜合實驗板 2.5 AvR單片機JTAG仿真器 2.6 并口下載器 2.7 通用型多功能USB編程器 第3章 AvR單片機開發軟件的安裝及第一個入門程序 3.1 安裝IAR for AVR 4.30集成開發環境 3.2 安裝AVR Studio集成開發環境 3.3 安裝PonyProg2000下載軟件 3.4 安裝SLISP下載軟件 3.5 AvR單片機開發過程 3.6 第一個AVR入門程序 第4章 AVR單片機的主要特性及基本結構 4.1 ATMEGA16(L)單片機的產品特性 4.2 ATMEGA16(L)單片機的基本組成及引腳配置 4.3 AvR單片機的CPU內核 4.4 AvR的存儲器 4.5 系統時鐘及時鐘選項 4.6 電源管理及睡眠模式 4.7 系統控制和復位 4.8 中斷 第5章 C語言基礎知識 5.1 C語言的標識符與關鍵字 5.2 數據類型 5.3 AVR單片機的數據存儲空間 5.4 常量、變量及存儲方式 5.5 數組 5.6 C語言的運算 5.7 流程控制 5.8 函數 5.9 指針 5.10 結構體 5.11 共用體 5.12 中斷函數 第6章 ATMEGA16(L)的I/O端口使用 6.1 ATMEGAl6(L)的I/O端口 6.2 ATMEGAl6(L)中4組通用數字I/O端口的應用設置 6.3 ATMEGA16(L)的I/O端口使用注意事項 6.4 ATMEGAl6(L)PB口輸出實驗 6.5 8位數碼管測試 6.6 獨立式按鍵開關的使用 6.7 發光二極管的移動控制(跑馬燈實驗) 6.8 0~99數字的加減控制 6.9 4×4行列式按鍵開關的使用 第7章 ATMEGAl6(L)的中斷系統使用 7.1 ATMEGA16(L)的中斷系統 7.2 相關的中斷控制寄存器 7.3 INT1外部中斷實驗 7.4 INTO/INTl中斷計數實驗 7.5 INTO/INTl中斷嵌套實驗 7.6 2路防盜報警器實驗 7.7 低功耗睡眠模式下的按鍵中斷 7.8 4×4行列式按鍵的睡眠模式中斷喚醒設計 第8章 ATMEGAl6(L)驅動16×2點陣字符液晶模塊 8.1 16×2點陣字符液晶顯示器概述 8.2 液晶顯示器的突出優點 8.3 16×2字符型液晶顯示模塊(LCM)特性 8.4 16×2字符型液晶顯示模塊(LCM)引腳及功能 8.5 16×2字符型液晶顯示模塊(LCM)的內部結構 8.6 液晶顯示控制驅動集成電路HD44780特點 8.7 HD44780工作原理 8.8 LCD控制器指令 8.9 LCM工作時序 8.10 8位數據傳送的ATMEGAl6(L)驅動16×2點陣字符液晶模塊的子函數 8.11 8位數據傳送的16×2 LCM演示程序1 8.12 8位數據傳送的16×2 LCM演示程序2 8.13 4位數據傳送的ATMEGA16(L)驅動16×2點陣字符液晶模塊的子函數 8.14 4位數據傳送的16×2 LCM演示程序 第9章 ATMEGA16(L)的定時/計數器 9.1 預分頻器和多路選擇器 9.2 8位定時/計時器T/C0 9.3 8位定時/計數器0的寄存器 9.4 16位定時/計數器T/C1 9.5 16位定時/計數器1的寄存器 9.6 8位定時/計數器T/C2 9.7 8位T/C2的寄存器 9.8 ICC6.31A C語言編譯器安裝 9.9 定時/計數器1的計時實驗 9.10 定時/計數器0的中斷實驗 9.11 4位顯示秒表實驗 9.12 比較匹配中斷及定時溢出中斷的測試實驗 9.13 PWM測試實驗 9.14 0~5 V數字電壓調整器 9.15 定時器(計數器)0的計數實驗 9.16 定時/計數器1的輸入捕獲實驗 ......
上傳時間: 2013-07-30
上傳用戶:yepeng139
嵌入式系統是將先進的計算機技術、半導體技術和電子技術與各個行業的具體應用相結合的產物。目前,嵌入式系統己經廣泛應用到工業、交通、能源、通信、科研、醫療衛生、國防以及日常生活等領域,并不斷朝著體積小,功能強的方向發展。嵌入式系統不同于原來的單片機系統,它不僅有自己的操作系統,上層應用程序,而且還具備網絡通信和信息管理的功能。 ARM體系的處理器是目前嵌入式系統中使用最廣泛的處理器。它采用了RISC技術,具有尋址方式簡單,寄存器多,指令長度固定等的特點使得它的處理速度快,執行效率高。由于Linux對于ARM技術的支持,具有內核可裁減,網絡功能強大,代碼開放的特點,把Linux應用到嵌入式系統中,能充分發揮ARM和Linux的優勢。 論文以“掌上中文語言學習系統”項目為依托,以ARM體系處理器和Ljnux操作系統的嵌入式系統為基礎,構建一個掌上語言學習設備。 論文首先進行了開發環境的設計與搭建,對開發主機進行TFTP服務器、NFS服務器、minicom串口通信和GNU交叉工具鏈進行配置。實現了針對NAND閃存的U-Boot啟動程序的建立,并對Linux操作系統內核進行了移植工作。最后利用圖形界面系統MiniGUI和遠程調試技術實現了掌上語言學習的軟件功能。
上傳時間: 2013-07-24
上傳用戶:jiangfire
體視攝像顯示技術的研究以應用于微創傷外科的光電醫療儀器——三維電視內窺鏡的開發與研制為背景,設計研究一種基于FPGA技術的立體顯示系統,以滿足三維立體內窺鏡、戰場立體觀察系統和立體電影等設備的技術要求。 主要研究內容是對體視攝像顯示系統的進行硬件電路設計、VerilogHDL 語言的軟件編程、并采用MCU(Micro Control IJnit)的I
上傳時間: 2013-05-30
上傳用戶:壞天使kk
51單片機定時器時間計算工具,即是計算定時器溢出時間TH0,TL0也是研究51單片機定時器的軟件模形。軟件中分析了定時器的工作流程和寄存器功能。可以助你更深刻的了解51單片機定時器。
上傳時間: 2013-06-13
上傳用戶:wengtianzhu
51單片機定時器時間計算工具,即是計算定時器溢出時間TH0,TL0也是研究51單片機定時器的軟件模形。軟件中分析了定時器的工作流程和寄存器功能。可以助你更深刻的了解51單片機定時器。
上傳時間: 2013-05-24
上傳用戶:Aidane
隨著多媒體技術發展,數字圖像處理已經成為眾多應用系統的核心和基礎。圖像處理作為一種重要的現代技術,已經廣泛應用于軍事指揮、大視場展覽、跟蹤雷達、電視會議、導航等眾多領域。因而,實現高分辨率高幀率圖像實時處理的技術不僅具有廣泛的應用前景,而且對相關領域的發展也具有深遠意義。 大視場可視化系統由于屏幕尺寸很大,只有在特制的曲面屏幕上才能使細節得到充分地展現。為了在曲面屏幕上正確的顯示圖像,需要在投影前實時地對圖像進行幾何校正和邊緣融合。而現場可編程門陣列(FPGA)則是用硬件處理實時圖像數據的理想選擇,基于FPGA的圖像處理技術是世界范圍內廣泛關注的研究領域。 本課題的主要工作就是設計一個以FPGA為核心的硬件系統,該系統可對高分辨率高刷新率(1024*768@60Hz)的視頻圖像實時地進行幾何校正和邊緣融合。 論文首先介紹了圖像處理的幾何原理,然后提出了基于FPGA的大視場實時圖像融合處理系統的設計方案和模塊功能劃分。系統分為算法與軟件設計,硬件電路設計和FPGA邏輯設計三個大的部分。本論文主要負責FPGA的邏輯設計。圍繞FPGA的邏輯設計,論文先介紹了系統涉及的關鍵技術,以及使用Verilog語言進行邏輯設計的基本原則。 論文重點對FPGA內部模塊設計進行了詳細的闡述。仲裁與控制模塊是頂模塊的主體部分,主要實現系統狀態機和時序控制;參數表模塊主要實現SDRAM存儲器的控制器接口,用于圖像處理時讀取參數信息。圖像處理模塊是整個系統的核心,通過調用FPGA內嵌的XtremeDSP模塊,高速地完成對圖像數據的乘累加運算。最后論文提出并實現了一種基于PicoBlaze核的12C總線接口用于配置FPGA外圍芯片。 經過對寄存器傳輸級VerilogHDL代碼的綜合和仿真,結果表明,本文所設計的系統可以應用在大視場可視化系統中完成對高分辨率高幀率圖像的實時處理。
上傳時間: 2013-05-19
上傳用戶:戀天使569
當今的船用導航雷達具有數字化、多功能、高性能、多接口、網絡化。同時要求具有高可靠性、高集成度、低成本,信號處理單元的小型化,產品更新周期短。要同時滿足上述需求,高集成度的器件應用是必須的。同時開發周期要短,需求軟件的可移植性要強,并且是模塊化設計,現場可編程門陣列器件(FPGA)已經成為設計首選。 現場可編程門陣列是基于通過可編程互聯連接的可配置邏輯塊(CLB)矩陣的可編程半導體器件。與為特殊設計而定制的專用集成電路(ASIC)相對,FPGA可以針對所需的應用或功能要求進行編程。雖然具有一次性可編程(OTP)FPGA,但是主要是基于SRAM的,其可隨著設計的演化進行重編程。CLB是FPGA內的基本邏輯單元。實際數量和特性會依器件的不同而不同,但是每個CLB都包含一個由4或6個輸入、一些選型電路(多路復用器等)和觸發器組成的可配置開關矩陣。開關矩陣是高度靈活的,可以進行配置以便處理組合邏輯、移位寄存器或RAM。當今的FPGA已經遠遠超出了先前版本的基本性能,并且整合了常用功能(如RAM、時鐘管理和:DSP)的硬(ASIC型)塊。由于具有可編程特性,所以FPGA是眾多市場的理想之選。它高集成度,以及用于設計的強大軟件平臺、IP核、在線升級可滿足需求。 本文介紹了基于FPGA實現船用導航雷達數字信號處理的設計,這是一個具體的、已經完成并進行小批量生產的產品,對指導實踐具有一定意義。
上傳時間: 2013-04-24
上傳用戶:稀世之寶039