隨著電信數(shù)據(jù)傳輸對速率和帶寬的要求變得越來越迫切,原有建成的網(wǎng)絡(luò)是基于話音傳輸業(yè)務(wù)的網(wǎng)絡(luò),已不能適應(yīng)當(dāng)前的需求.而建設(shè)新的寬帶網(wǎng)絡(luò)需要相當(dāng)大的投資且建設(shè)工期長,無法滿足特定客戶對高速數(shù)據(jù)傳輸?shù)慕谛枨?反向復(fù)用技術(shù)是把一個單一的高速數(shù)據(jù)流在發(fā)送端拆散并放在兩個或者多個低速數(shù)據(jù)鏈路上進(jìn)行傳輸,在接收端再還原為高速數(shù)據(jù)流.該文提出一種基于FPGA的多路E1反向復(fù)用傳輸芯片的設(shè)計方案,使用四個E1構(gòu)成高速數(shù)據(jù)的透明傳輸通道,支持E1線路間最大相對延遲64ms,通過鏈路容量調(diào)整機(jī)制,可以動態(tài)添加或刪除某條E1鏈路,實(shí)現(xiàn)靈活、高效的利用現(xiàn)有網(wǎng)絡(luò)實(shí)現(xiàn)視頻、數(shù)據(jù)等高速數(shù)據(jù)的傳輸,能夠節(jié)省帶寬資源,降低成本,滿足客戶的需求.系統(tǒng)分為發(fā)送和接收兩部分.發(fā)送電路實(shí)現(xiàn)四路E1的成幀操作,數(shù)據(jù)拆分采用線路循環(huán)與幀間插相結(jié)合的方法,A路插滿一幀(30時隙)后,轉(zhuǎn)入B路E1間插數(shù)據(jù),依此類推,循環(huán)間插所有的數(shù)據(jù).接收電路進(jìn)行HDB3解碼,幀同步定位(子幀同步和復(fù)幀同步),線路延遲判斷,FIFO和SDRAM實(shí)現(xiàn)多路數(shù)據(jù)的對齊,最后按照約定的高速數(shù)據(jù)流的幀格式輸出數(shù)據(jù).整個數(shù)字電路采用Verilog硬件描述語言設(shè)計,通過前仿真和后仿真的驗(yàn)證.以30萬門的FPGA器件作為硬件實(shí)現(xiàn),經(jīng)過綜合和布線,特別是寫約束和增量布線手動調(diào)整電路的布局,降低關(guān)鍵路徑延時,最終滿足設(shè)計要求.
標(biāo)簽:
FPGA
多路
傳輸
片的設(shè)計
上傳時間:
2013-07-16
上傳用戶:asdkin