亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

峰峰值

  • 日本電子電路精選設(shè)計大全-484頁-7.1M.pdf

    New-尚未歸類-412冊-8.64G 日本電子電路精選設(shè)計大全-484頁-7.1M.pdf。日本電子電路精選設(shè)計大全 (最新電路)日本電子電路精選:低頻小信號放大電路,測量用小信號放大電路,低頻功率放大電路,高速寬帶放大器,信號的切換/隔離/衷減電路,比較器/峰值檢測器/取樣保持電路等內(nèi)容。

    標(biāo)簽: 484 7.1 日本電子

    上傳時間: 2013-04-24

    上傳用戶:cc1

  • 無線通信中射頻功率放大器預(yù)失真技術(shù)研究.rar

    正交頻分復(fù)用(OFDM)技術(shù)由于具有頻譜利用率高、抗多徑能力強(qiáng)等突出優(yōu)點(diǎn),因此在高速無線通信領(lǐng)域得到了廣泛的應(yīng)用。但是,OFDM信號具有較高的峰平比(PAPR),受功率放大器(簡稱功放)非線性效應(yīng)的影響,產(chǎn)生信號帶內(nèi)失真和帶外頻譜擴(kuò)展,從而導(dǎo)致系統(tǒng)性能下降。因此,功放線性化技術(shù),對于無線通信技術(shù)的發(fā)展具有重要的意義。其中,數(shù)字預(yù)失真技術(shù)以其準(zhǔn)確性、復(fù)雜度、自適應(yīng)性等方面良好的綜合性能,已經(jīng)成為最具發(fā)展?jié)摿Φ墓Ψ啪€性化技術(shù)。本文深入研究了適用于無線通信OFDM系統(tǒng)的數(shù)字預(yù)失真技術(shù),研究內(nèi)容主要涉及:功率放大器預(yù)失真模型構(gòu)造、預(yù)失真模型參數(shù)辨識、OFDM系統(tǒng)預(yù)失真方案設(shè)計等方面。 本文主要研究工作與創(chuàng)新點(diǎn)總結(jié)如下: 1.針對現(xiàn)有無記憶多項(xiàng)式預(yù)失真器在輸出回退(OBO)減小時的性能受限問題,基于分段非線性補(bǔ)償?shù)乃枷?提出了一種動態(tài)系數(shù)多項(xiàng)式預(yù)失真方法。動態(tài)系數(shù)多項(xiàng)式具有多組系數(shù),隨著輸入信號幅度的變化,多項(xiàng)式選取不同的系數(shù)組合,從而降低非線性補(bǔ)償?shù)恼`差;文中討論了動態(tài)系數(shù)多項(xiàng)式模型的構(gòu)造方法,并且給出了基于直接學(xué)習(xí)結(jié)構(gòu)的簡化遞歸系數(shù)估計算法。

    標(biāo)簽: 無線通信 射頻功率放大器 技術(shù)研究

    上傳時間: 2013-04-24

    上傳用戶:sa123456

  • 電動汽車TTCAN總線技術(shù)研究.rar

    TTCAN協(xié)議在CAN協(xié)議基礎(chǔ)之上,將事件觸發(fā)機(jī)制與實(shí)時性更高的時間觸發(fā)機(jī)制相結(jié)合,提高了網(wǎng)絡(luò)實(shí)時性,滿足對安全性要求苛刻的實(shí)時系統(tǒng)以及總線日益增長的信息負(fù)載的需求;同時,CAN總線技術(shù)的基礎(chǔ)為TTCAN總線技術(shù)研究奠定了很好的軟硬件支持條件。 論文首先介紹了TTCAN協(xié)議的通訊原理、軟硬件環(huán)境的建立和總線網(wǎng)絡(luò)性能的測試方法。 按照ISO11898-4標(biāo)準(zhǔn)的要求,在自主研發(fā)的CAN總線實(shí)時仿真系統(tǒng)上結(jié)合軟件編程能夠?qū)崿F(xiàn)TTCAN協(xié)議的時間觸發(fā)通訊功能,使整個系統(tǒng)成為具有時間觸發(fā)功能的TTCAN總線通訊網(wǎng)絡(luò),得到網(wǎng)絡(luò)要采用TTCAN協(xié)議通訊時各ECU必須具備穩(wěn)定可靠的本地時鐘和相應(yīng)的時鐘同步和計數(shù)機(jī)制的結(jié)論。 結(jié)合混合動力電動汽車動力系統(tǒng)對采用TTCAN協(xié)議通訊時的網(wǎng)絡(luò)性能進(jìn)行了測試和分析,結(jié)果表明,TTCAN網(wǎng)絡(luò)中周期型消息的實(shí)時性不受網(wǎng)絡(luò)中其他消息的影響,時間觸發(fā)通訊方式和系統(tǒng)矩陣的調(diào)度安排在一定程度上減少了總線上消息間的沖突,提高了網(wǎng)絡(luò)實(shí)時性和總線帶寬利用率。 對比分析同等條件下TTCAN總線網(wǎng)絡(luò)和CAN總線網(wǎng)絡(luò)的性能,TTCAN協(xié)議能夠保證網(wǎng)絡(luò)總線在高峰值負(fù)載的情況下網(wǎng)絡(luò)的實(shí)時性。 研究了對TTCAN總線網(wǎng)絡(luò)中time master(時間主節(jié)點(diǎn))和reference message(參考消息)進(jìn)行故障診斷和容錯的方法,通過實(shí)驗(yàn)驗(yàn)證了采用冗余的方式能夠保證當(dāng)前時間意義上的主節(jié)點(diǎn)和參考消息故障情況下整個網(wǎng)絡(luò)的性能不受影響,提高故障情況下網(wǎng)絡(luò)的可靠性。

    標(biāo)簽: TTCAN 電動汽車 總線

    上傳時間: 2013-04-24

    上傳用戶:refent

  • 110kV真空斷路器電磁場數(shù)值分析.rar

    近年來,人們對環(huán)境保護(hù)越來越重視,SF<,6>氣體的使用和排放受到限制,從而使電器領(lǐng)域內(nèi)SF<,6>斷路器的發(fā)展也受到限制。而真空斷路器充分利用了真空優(yōu)異的絕緣與熄弧特性,且對環(huán)境不造成污染,所以目前在中壓領(lǐng)域已經(jīng)占據(jù)了主導(dǎo)地位,而且不斷向高電壓、大容量方向發(fā)展。因此,未來高壓真空斷路器必然取代高壓SF<,6>斷路器。真空滅弧室是真空斷路器的“心臟”,所以,開發(fā)高壓真空斷路器最關(guān)鍵的是滅弧室的設(shè)計。本文對110kV的真空滅弧室的內(nèi)部電磁場進(jìn)行了仿真分析,為我國開發(fā)110kV真空斷路器提供一定的參考。 本文采用有限元軟件對110kV真空斷路器滅弧室內(nèi)部靜電場進(jìn)行了仿真分析,得到了滅弧室內(nèi)部各種屏蔽罩的大小、尺寸和位置對電場分布的影響;觸頭距離對滅弧室內(nèi)部電場分布的影響;傘裙對滅弧室內(nèi)部電場分布的影響。再根據(jù)等離子體和金屬蒸氣具有一定導(dǎo)電率的特點(diǎn),從麥克斯韋基本方程出發(fā),推導(dǎo)了滅弧室內(nèi)部電場所滿足的計算方程,然后用有限元法對二維電場進(jìn)行了求解。考慮到弧后粒子消散過程中,電極和懸浮導(dǎo)體表面會有帶電微粒的存在,又計算分析了帶電微粒對真空滅弧室電場分布的影響,進(jìn)而提出了使滅弧室內(nèi)部電場更加均勻的措施。 根據(jù)大電流真空電弧的物理模型,基于磁場對電流的作用力理論,計算分析了真空電弧自生磁場的收縮效應(yīng)以及對分?jǐn)嚯娀〉挠绊?,得到了弧柱中自生磁場產(chǎn)生的電磁壓強(qiáng)分布,最后分析了外加縱向磁場分量對減小自生磁場收縮效應(yīng)的作用。 建立了110kV、1/2線圈以及1/3線圈縱向磁場觸頭三維電極模型,并利用有限元法進(jìn)行了三維靜磁場和渦流場仿真。得到了電流在峰值和過零時縱向磁場分別在觸頭片表面和觸頭間隙中心平面上的二維和三維分布,給出了這兩種觸頭在電流過零時縱向磁場滯后時間沿徑向路徑和軸向路徑的分布規(guī)律,最后還對這兩種觸頭的性能進(jìn)行了比較。

    標(biāo)簽: 110 kV 真空斷路器

    上傳時間: 2013-07-09

    上傳用戶:smthxt

  • 大型換流變壓器直流偏磁問題的研究.rar

    直流偏磁是變壓器的一種非正常工作狀態(tài),是指在變壓器的勵磁電流中出現(xiàn)了直流分量。在直流輸電系統(tǒng)中,由于換流站的工作特性,有直流電流分量流過換流變壓器的繞組,產(chǎn)生直流偏磁現(xiàn)象,這一現(xiàn)象將對換流變壓器的正常運(yùn)行產(chǎn)生不利的影響,如勵磁電流發(fā)生畸變、變壓器鐵心損耗增加及鐵心高度飽和引起的漏磁通增加。因此,從電磁場的角度分析這一現(xiàn)象是必要的。 由于鐵磁材料的非線性,不能應(yīng)用疊加原理分析直流偏磁時的勵磁情況。為此,本文應(yīng)用了二維瞬態(tài)場路直接耦合有限元法,借助大型有限元分析軟件Ansoft,定量分析了在不同等級直流偏磁電流作用下,換流變壓器空載運(yùn)行狀態(tài)下的勵磁電流波形情況,結(jié)果表明,直流偏磁使鐵心中的磁通密度發(fā)生偏移,對應(yīng)的勵磁電流波形呈現(xiàn)正負(fù)半波極不對稱的形狀,并且直流偏磁量越大勵磁電流的畸變越嚴(yán)重。 在求出直流偏磁量與勵磁電流峰值關(guān)系的基礎(chǔ)上,應(yīng)用一種基于鐵心空載損耗數(shù)據(jù)的方法,定量分析了在不同等級直流偏磁電流作用下,換流變壓器鐵心損耗情況,結(jié)果表明,隨著直流偏磁電流的增加,鐵心損耗也會隨之增加,這會導(dǎo)致鐵心溫升上升,嚴(yán)重時會導(dǎo)致鐵心局部過熱,影響變壓器的正常運(yùn)行。 在漏磁場分析中,討論了變壓器漏磁場的類型和作用,經(jīng)過合理簡化,建立了換流變壓器二維漏磁場計算模型,應(yīng)用二維瞬態(tài)場路直接耦合有限元法,分析了不同等級直流偏磁電流作用下,換流變壓器漏磁場分布情況,結(jié)果表明,隨著直流偏磁量的增加,不同位置處漏磁場分量的變化規(guī)律基本不變,但漏磁在增加,且不同位置漏磁分量增加的速率不同。

    標(biāo)簽: 大型 變壓器 直流偏磁

    上傳時間: 2013-06-25

    上傳用戶:zxc23456789

  • 基于TMS320C6713和USB2.0的多路實(shí)時信號采集系統(tǒng)的研究.rar

    隨著現(xiàn)代科學(xué)技術(shù)的迅速發(fā)展和人們對數(shù)據(jù)采集技術(shù)要求的日益提 高,近年來數(shù)據(jù)采集技術(shù)得到了長足的發(fā)展,主要表現(xiàn)為精度越來越高, 傳輸?shù)乃俣仍絹碓娇臁5歉鞣N基于ISA、PCI 等總線的數(shù)據(jù)采集系統(tǒng)存 在著安裝麻煩、受計算機(jī)插槽數(shù)量、地址、中斷資源的限制、可擴(kuò)展性 差等缺陷,嚴(yán)重的制約了它們的應(yīng)用范圍。USB 總線的出現(xiàn)很好的解決了 上述問題,它是1995 年INTEL、NEC、MICROSOFT、IBM 等公司為解決傳 統(tǒng)總線的不足而推出的一種新型串行通信標(biāo)準(zhǔn)。為了適應(yīng)高速傳輸?shù)男?要,2004 年4月,這些公司在原來1.1 協(xié)議的基礎(chǔ)上制定了USB2.0 傳輸 協(xié)議,使傳輸速度達(dá)到了480Mb/s。該總線具有安裝方便、高帶寬、易擴(kuò) 展等優(yōu)點(diǎn),已經(jīng)逐漸成為現(xiàn)代數(shù)據(jù)采集傳輸?shù)陌l(fā)展趨勢。 以高速數(shù)字信號處理器(DSPs)為基礎(chǔ)的實(shí)時數(shù)字信號處理技術(shù)近 年來發(fā)展迅速,并獲得了廣泛的應(yīng)用。TMS320C6713 是德州儀器公司 ( Texas Instrument ) 推出的浮點(diǎn)DSPs , 其峰值處理能力達(dá)到了 1350MFLOPS,是目前國際上性能最高的DSPs 之一。同時該DSPs 接口豐 富,擴(kuò)展能力強(qiáng),非常適合于做主控芯片。 基于TMS320C6713 和USB2.0,本文設(shè)計了一套多路實(shí)時信號采集系 統(tǒng)。該設(shè)計充分利用了高速數(shù)字信號處理器TMS320C6713 和USB 芯片 CY7C68001 的各種優(yōu)點(diǎn),實(shí)現(xiàn)了傳輸速度快,采樣精度高,易于擴(kuò)展,接口簡單的特點(diǎn)。在本文中詳細(xì)討論了各種協(xié)議和功能模塊的設(shè)計。本文 的設(shè)計主要分為硬件部分和軟件部分,其中硬件部分包括模擬信號輸入 模塊,AD 數(shù)據(jù)采集模塊,USB 模塊,所有的硬件模塊都在TMS320C6713 的協(xié)調(diào)控制下工作,軟件部分包括DSP 程序和PC 端程序設(shè)計??偟脑O(shè)計 思想是以TMS320C6713為核心,通過AD 轉(zhuǎn)換,將采集的數(shù)據(jù)傳送給 TMS320C6713 進(jìn)行數(shù)據(jù)處理,并將處理后的數(shù)據(jù)經(jīng)過USB 接口傳送到上位 機(jī)。

    標(biāo)簽: C6713 320C 6713 TMS

    上傳時間: 2013-04-24

    上傳用戶:fudong911

  • 電子式互感器的關(guān)鍵技術(shù)及其相關(guān)理論研究.rar

    電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢,因而代表了高電壓等級電力系統(tǒng)中電流和電壓測量的一種極具吸引力的發(fā)展方向。隨著信息技術(shù)的發(fā)展和電力市場中競爭機(jī)制的形成,電子式互感器成為人們研究的熱點(diǎn);越來越多的新技術(shù)被引入到電子式互感器設(shè)計中,以提高其工作可靠性,降低運(yùn)行總成本,減小對生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實(shí)用化中的關(guān)鍵技術(shù)而展開理論與實(shí)驗(yàn)研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術(shù)和自監(jiān)測功能的實(shí)現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開環(huán)結(jié)構(gòu),對每個環(huán)節(jié)的精度和可靠性的要求都很高,嚴(yán)重制約了ECT整體性能的提高,影響其實(shí)用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎(chǔ)上設(shè)計了一種基于LPCT和PCB空心線圈的組合結(jié)構(gòu)的新型電流傳感器。該結(jié)構(gòu)具有并聯(lián)的特點(diǎn),結(jié)合了這兩種互感器的優(yōu)點(diǎn),采用數(shù)據(jù)融合算法來處理兩路信號,實(shí)現(xiàn)高精度測量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗(yàn)和仿真結(jié)果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達(dá)到IEC 60044-8標(biāo)準(zhǔn)中關(guān)于測量(幅值誤差)、保護(hù)(復(fù)合誤差)和暫態(tài)響應(yīng)(峰值)的準(zhǔn)確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結(jié)構(gòu)和輸出信號等方面與傳統(tǒng)的電壓互感器有很大不同,本文設(shè)計了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗(yàn)研究與計算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結(jié)果表明,設(shè)計的10kV精密電阻分壓器的準(zhǔn)確度滿足IEC 60044-7標(biāo)準(zhǔn)要求,可達(dá)0.2級。 電子式互感器的關(guān)鍵技術(shù)之一是內(nèi)部的數(shù)字化以及其標(biāo)準(zhǔn)化接口,本文以10kV組合型電子式互感器為對象設(shè)計了一種實(shí)用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結(jié)構(gòu)。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問題,進(jìn)而依照IEC61850-9-1標(biāo)準(zhǔn),實(shí)現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級的應(yīng)用研究中,ECT高壓側(cè)的電源問題是關(guān)鍵技術(shù)之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側(cè)母線電流中獲取電能。在取電CT和整流橋之間設(shè)計一個串聯(lián)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。激光電源方案以先進(jìn)的光電轉(zhuǎn)換器、半導(dǎo)體激光二極管和光纖為基礎(chǔ),單獨(dú)一根上行光纖同時完成供能和控制信號的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問題,延長了激光器的使用壽命。作為綜合應(yīng)用實(shí)例,設(shè)計并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術(shù)的高壓電子式電流互感器?;ジ衅鞲邏簜?cè)的一次轉(zhuǎn)換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補(bǔ)償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測量精度:互感器低電位端的二次轉(zhuǎn)換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來控制一次轉(zhuǎn)換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號可以通過同一根供能光纖傳送到一次轉(zhuǎn)換器。該互感器具有在線監(jiān)測功能,這種預(yù)防性維護(hù)和自檢測功能夠提示維護(hù)或提出警告,提高了可靠性。系統(tǒng)測試表明:具有低功耗光纖發(fā)射驅(qū)動電路的一次轉(zhuǎn)換器平均功耗在40mw以下:上行光纖中通信波特率可以達(dá)到200kb/s,下行光纖中更是高達(dá)2Mb/s;系統(tǒng)準(zhǔn)確度同時滿足IEC6044-8標(biāo)準(zhǔn)對0.2S級測量和5TPE級保護(hù)電子式互感器的要求。

    標(biāo)簽: 電子式互感器 關(guān)鍵技術(shù)

    上傳時間: 2013-06-09

    上傳用戶:handless

  • 抽油機(jī)超高轉(zhuǎn)差率電動機(jī)的應(yīng)用研究.rar

    目前,油田的開采都是通過抽油機(jī)抽取地下的石油,因此國內(nèi)油田對抽油機(jī)的需求量非常大。然而,據(jù)統(tǒng)計在油田生產(chǎn)成本中約有三分之一為電能消耗,其中抽油機(jī)消耗的電能約占總電能消耗的80%。驅(qū)動電動機(jī)是抽油機(jī)消耗電能的主要設(shè)備,年耗電量超過百億KWh。所以對抽油機(jī)的機(jī)械系統(tǒng)和電氣控制系統(tǒng)進(jìn)行節(jié)能改造,最大限度地挖掘抽油機(jī)的節(jié)電潛力,可帶來相當(dāng)可觀的經(jīng)濟(jì)效益。 采用超高轉(zhuǎn)差電機(jī)作為抽油機(jī)的驅(qū)動電機(jī),是現(xiàn)有改進(jìn)抽油機(jī)系統(tǒng)的主要措施之一。這種電動機(jī)的特點(diǎn)是轉(zhuǎn)子電阻較大,起動轉(zhuǎn)矩得到有效提高,安裝容量得以降低;機(jī)械特性軟,遇到換相沖擊載荷時,轉(zhuǎn)速下降,靠曲柄慣性作用,減速器和電動機(jī)的扭矩變化趨于平緩,峰值扭矩明顯降低,從而改善了機(jī)、桿、泵的配合,提高了泵的充滿系數(shù),增加產(chǎn)液量,達(dá)到系統(tǒng)節(jié)能的目的。此外,抽油機(jī)的工作過程中,驅(qū)動電機(jī)有時會處于發(fā)電狀態(tài),對供電網(wǎng)的電能質(zhì)量造成很大危害。超高轉(zhuǎn)差率電機(jī)能夠有效避免發(fā)電狀態(tài)的出現(xiàn),從而減小對供電網(wǎng)的沖擊,保證供電質(zhì)量。 本課題以抽油機(jī)節(jié)能改造中驅(qū)動電機(jī)節(jié)能為出發(fā)點(diǎn),從超高轉(zhuǎn)差率電動機(jī)的機(jī)械特性、起動轉(zhuǎn)矩等方面,對該類型電動機(jī)驅(qū)動抽油機(jī)的優(yōu)勢進(jìn)行了理論分析。此外,本文還從能量平衡的角度,以抽油機(jī)中的動能平衡理論為基礎(chǔ)分析了電機(jī)轉(zhuǎn)差率對抽油機(jī)節(jié)能的影響。 最后,本文結(jié)合抽油機(jī)運(yùn)動分析和抽油機(jī)曲柄運(yùn)動曲線,以抽油機(jī)載荷系數(shù)為目標(biāo)函數(shù),編寫了優(yōu)化計算程序,從而實(shí)現(xiàn)了對適合某一井況下抽油機(jī)的驅(qū)動電機(jī)的最優(yōu)轉(zhuǎn)差率的定量計算,并以此作為設(shè)計或者選配超高轉(zhuǎn)差率電動機(jī)的依據(jù)。

    標(biāo)簽: 抽油機(jī) 應(yīng)用研究 電動機(jī)

    上傳時間: 2013-07-07

    上傳用戶:greethzhang

  • 5kW全橋軟開關(guān)DCDC電源.rar

    開關(guān)損耗及其帶來的散熱問題限制了變流器開關(guān)頻率的提高,從而限制了變流器的小型化和輕量化。軟開關(guān)技術(shù)能夠有效的降低開關(guān)損耗,提高變流器的效率和開關(guān)頻率,被廣泛的應(yīng)用在各種大功率開關(guān)電源場合。 本文首先對軟開關(guān)技術(shù)進(jìn)行了一個概述,介紹了軟開關(guān)技術(shù)的工作原理及發(fā)展歷史,特別提到了最新的控制型軟開關(guān)技術(shù)。在第二章中,針對課題,著重講述了全橋電路。作為對比,首先分析了全橋硬開關(guān)電路的工作原理和開關(guān)損耗。然后,分析了全橋軟開關(guān)兩種常見的實(shí)現(xiàn)方法:ZVS和ZVZCS,并針對幾種常見拓?fù)洌敿?xì)對比了它們的工作原理,軟開關(guān)實(shí)現(xiàn)方法,軟開關(guān)實(shí)現(xiàn)效果,軟開關(guān)實(shí)現(xiàn)范圍和總體效率,指出了它們的優(yōu)缺點(diǎn)和各自適合的應(yīng)用領(lǐng)域。在第三章中,首先介紹了全橋軟開關(guān)的兩種控制策略:移相全橋和有限雙極性,從實(shí)現(xiàn)方法和對軟開關(guān)效果的影響兩個方面,做出比較。然后介紹了開關(guān)電源常見的三種控制方式:電壓模式控制、峰值電流模式和平均電流模式控制,其中詳細(xì)介紹了平均電流模式控制,給出了設(shè)計思想和步驟。最后,給出了全橋軟開關(guān)電路的小信號模型,分析了軟開關(guān)技術(shù)的引入對傳統(tǒng)PWM硬開關(guān)全橋電路小信號模型的影響。第四章給出了5kW電力操作電源的具體設(shè)計步驟,如方案選擇,磁設(shè)計、控制環(huán)路設(shè)計、副邊整流電壓尖峰吸收等關(guān)鍵步驟。第五章分析了實(shí)驗(yàn)波形和實(shí)驗(yàn)數(shù)據(jù),驗(yàn)證了上述理論和設(shè)計的正確性。

    標(biāo)簽: DCDC 5kW 全橋

    上傳時間: 2013-05-22

    上傳用戶:dajin

  • ARM板全部圖紙代碼.rar

    CPU:S3C44B0X FLASH:HY29LV160BT 2M SDRAM:HY57V641620 8M 2 COM USB1.1 PDIUSBD12 NET RTL8019AS JTAG 14PIN LCD 接口 4 KEY 3 LED 峰鳴器 時鐘電池

    標(biāo)簽: ARM 圖紙 代碼

    上傳時間: 2013-07-19

    上傳用戶:Neal917

主站蜘蛛池模板: 扶风县| 海安县| 丹凤县| 海口市| 兴山县| 鲜城| 天津市| 邮箱| 嘉祥县| 大竹县| 景谷| 东乡| 万安县| 巩留县| 广水市| 伊春市| 宁明县| 宁海县| 东港市| 探索| 丘北县| 尼勒克县| 安庆市| 柳江县| 日土县| 朝阳区| 曲麻莱县| 当雄县| 怀柔区| 丘北县| 汤阴县| 望都县| 玉树县| 靖西县| 永平县| 高雄县| 始兴县| 长武县| 丹阳市| 清流县| 章丘市|