-
//Euler 函數前n項和
/*
phi(n) 為n的Euler原函數
if( (n/p) % i == 0 ) phi(n)=phi(n/p)*i
else phi(n)=phi(n/p)*(i-1)
對于約數:divnum
如果i|pr[j] 那么 divnum[i*pr[j]]=divsum[i]/(e[i]+1)*(e[i]+2) //最小素因子次數加1
否則 divnum[i*pr[j]]=divnum[i]*divnum[pr[j]] //滿足積性函數條件
對于素因子的冪次 e[i]
如果i|pr[j] e[i*pr[j]]=e[i]+1 //最小素因子次數加1
否則 e[i*pr[j]]=1 //pr[j]為1次
對于本題:
1. 篩素數的時候首先會判斷i是否是素數。
根據定義,當 x 是素數時 phi[x] = x-1
因此這里我們可以直接寫上 phi[i] = i-1
2. 接著我們會看prime[j]是否是i的約數
如果是,那么根據上述推導,我們有:phi[ i * prime[j] ] = phi[i] * prime[j]
否則
phi[ i * prime[j] ] = phi[i] * (prime[j]-1)
(其實這里prime[j]-1就是phi[prime[j]],利用了歐拉函數的積性)
經過以上改良,在篩完素數后,我們就計算出了phi[]的所有值。
我們求出phi[]的前綴和
*/
標簽:
phi
Euler
else
函數
上傳時間:
2016-12-31
上傳用戶:gyq
-
遙控解碼通過電腦串口顯示
/* 晶振:11.0569MHz */
#include <REGX52.h>
#define uchar unsigned char
uchar data IRcode[4] //定義一個4字節的數組用來存儲代碼
uchar CodeTemp //編碼字節緩存變量
uchar i,j,k //延時用的循環變量
sbit IRsignal=P3^2 //HS0038接收頭OUT端直接連P3.2(INT0)
/**************************延時0.9ms子程序**********************/
void Delay0_9ms(void)
{uchar j,k
for(j=18 j>0 j--)
for(k=20 k>0 k--)
}
/***************************延時1ms子程序**********************/
void Delay1ms(void)
{uchar i,j
for(i=2 i>0 i--)
for(j=230 j>0 j--)
}
標簽:
uchar
unsigned
11.0569
include
上傳時間:
2013-12-12
上傳用戶:Breathe0125
-
Instead of finding the longest common
subsequence, let us try to determine the
length of the LCS.
Then tracking back to find the LCS.
Consider a1a2…am and b1b2…bn.
Case 1: am=bn. The LCS must contain am,
we have to find the LCS of a1a2…am-1 and
b1b2…bn-1.
Case 2: am≠bn. Wehave to find the LCS of
a1a2…am-1 and b1b2…bn, and a1a2…am and
b b b
b1b2…bn-1
Let A = a1 a2 … am and B = b1 b2 … bn
Let Li j denote the length of the longest i,g g
common subsequence of a1 a2 … ai and b1 b2
… bj.
Li,j = Li-1,j-1 + 1 if ai=bj
max{ L L } a≠b i-1,j, i,j-1 if ai≠j
L0,0 = L0,j = Li,0 = 0 for 1≤i≤m, 1≤j≤n.
標簽:
the
subsequence
determine
Instead
上傳時間:
2013-12-17
上傳用戶:evil
-
//初始化
initscr()
//獲得屏幕尺寸
getmaxyx(stdscr, h, w)
//畫背景
for(i=0 i<h i++)
for(j=0 j<w j++){
mvaddch(i, j, ACS_CKBOARD)
}
refresh()
//建立窗口
pad = newpad(80, 128)
for(i=0 i<80 i++){
char line[128]
sprintf(line, "This line in pad is numbered d\n", i)
mvwprintw(pad, i, 0, line)
}
//刷新屏幕
refresh()
prefresh(pad, 0, 1, 5, 10, 20, 45)
for(i=0 i<50 i++){
prefresh(pad, i+1, 1, 5, 10, 20, 45)
usleep(30000)
}
//等待按鍵
getch()
標簽:
getmaxyx
initscr
stdscr
for
上傳時間:
2014-08-30
上傳用戶:龍飛艇
-
嚴格按照BP網絡計算公式來設計的一個matlab程序,對BP網絡進行了優化設計
優化1:設計了yyy,即在o(k)計算公式時,當網絡進入平坦區時(<0.0001)學習率加大,出來后學習率又還原
優化2:v(i,j)=v(i,j)+deltv(i,j)+a*dv(i,j)
標簽:
matlab
yyy
BP網絡
計算公式
上傳時間:
2014-11-30
上傳用戶:妄想演繹師
-
實驗源代碼
//Warshall.cpp #include<stdio.h> void warshall(int k,int n) { int i , j, t; int temp[20][20]; for(int a=0;a<k;a++) { printf("請輸入矩陣第%d 行元素:",a); for(int b=0;b<n;b++) { scanf ("%d",&temp[a][b]); } } for(i=0;i<k;i++){ for( j=0;j<k;j++){ if(temp[ j][i]==1) { for(t=0;t<n;t++) { temp[ j][t]=temp[i][t]||temp[ j][t]; } } } } printf("可傳遞閉包關系矩陣是:\n"); for(i=0;i<k;i++) { for( j=0;j<n;j++) { printf("%d", temp[i][ j]); } printf("\n"); } } void main() { printf("利用 Warshall 算法求二元關系的可傳遞閉包\n"); void warshall(int,int); int k , n; printf("請輸入矩陣的行數 i: "); scanf("%d",&k);
四川大學實驗報告 printf("請輸入矩陣的列數 j: "); scanf("%d",&n); warshall(k,n); }
標簽:
warshall
離散
實驗
上傳時間:
2016-06-27
上傳用戶:梁雪文以
-
Computation of loudness (Zwicker model) according to ISO 532B / DIN 45631 norms.
This model is valid for steady sounds.
Code based on BASIC program published in the following article:
Program for calculating loudness according to DIN 45 631 (ISO 532B)",
E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991).
標簽:
計算
聲學
上傳時間:
2016-11-14
上傳用戶:zztony16
-
void DFS(MGraph G, int i)
{
int j;
visited[i] = TRUE;
printf("%c ", G.vexs[i]);
for (j=0; j<G.numVertexes; ++j)
{
if (G.arc[i][j]!=INFINITY && !visited[j])
DFS(G, j);
}
}
標簽:
多項式
代碼
計算
上傳時間:
2016-12-28
上傳用戶:chenyameng
-
1.Describe a Θ(n lg n)-time algorithm that, given a set S of n integers and
another integer x, determines whether or not there exist two elements in S whose sum is exactly x. (Implement exercise 2.3-7.)
#include<stdio.h>
#include<stdlib.h>
void merge(int arr[],int low,int mid,int high){
int i,k;
int *tmp=(int*)malloc((high-low+1)*sizeof(int));
int left_low=low;
int left_high=mid;
int right_low=mid+1;
int right_high=high;
for(k=0;left_low<=left_high&&right_low<=right_high;k++)
{
if(arr[left_low]<=arr[right_low]){
tmp[k]=arr[left_low++];
}
else{
tmp[k]=arr[right_low++];
}
}
if(left_low<=left_high){
for(i=left_low;i<=left_high;i++){
tmp[k++]=arr[i];
}
}
if(right_low<=right_high){
for(i=right_low;i<=right_high;i++)
tmp[k++]=arr[i];
}
for(i=0;i<high-low+1;i++)
arr[low+i]=tmp[i];
}
void merge_sort(int a[],int p,int r){
int q;
if(p<r){
q=(p+r)/2;
merge_sort(a,p,q);
merge_sort(a,q+1,r);
merge(a,p,q,r);
}
}
int main(){
int a[8]={3,5,8,6,4,1,1};
int i,j;
int x=10;
merge_sort(a,0,6);
printf("after Merging-Sort:\n");
for(i=0;i<7;i++){
printf("%d",a[i]);
}
printf("\n");
i=0;j=6;
do{
if(a[i]+a[j]==x){
printf("exist");
break;
}
if(a[i]+a[j]>x)
j--;
if(a[i]+a[j]<x)
i++;
}while(i<=j);
if(i>j)
printf("not exist");
system("pause");
return 0;
}
標簽:
c語言
算法
排序
上傳時間:
2017-04-01
上傳用戶:糖兒水嘻嘻
-
題目:古典問題:有一對兔子,從出生后第3個月起每個月都生一對兔子,小兔子長到第三個月后每個月又生一對兔子,假如兔子都不死,問每個月的兔子總數為多少?
//這是一個菲波拉契數列問題
public class lianxi01 {
public static void main(String[] args) {
System.out.println("第1個月的兔子對數: 1");
System.out.println("第2個月的兔子對數: 1");
int f1 = 1, f2 = 1, f, M=24;
for(int i=3; i<=M; i++) {
f = f2;
f2 = f1 + f2;
f1 = f;
System.out.println("第" + i +"個月的兔子對數: "+f2);
}
}
}
【程序2】
題目:判斷101-200之間有多少個素數,并輸出所有素數。
程序分析:判斷素數的方法:用一個數分別去除2到sqrt(這個數),如果能被整除, 則表明此數不是素數,反之是素數。
public class lianxi02 {
public static void main(String[] args) {
int count = 0;
for(int i=101; i<200; i+=2) {
boolean b = false;
for(int j=2; j<=Math.sqrt(i); j++)
{
if(i % j == 0) { b = false; break; }
else { b = true; }
}
if(b == true) {count ++;System.out.println(i );}
}
System.out.println( "素數個數是: " + count);
}
}
【程序3】
題目:打印出所有的 "水仙花數 ",所謂 "水仙花數 "是指一個三位數,其各位數字立方和等于該數本身。例如:153是一個 "水仙花數 ",因為153=1的三次方+5的三次方+3的三次方。
public class lianxi03 {
public static void main(String[] args) {
int b1, b2, b3;
標簽:
java
編程
上傳時間:
2017-12-24
上傳用戶:Ariza