亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁(yè)| 資源下載| 資源專輯| 精品軟件
登錄| 注冊(cè)

幅度

  • EG8010 純正弦波逆變器典型應(yīng)用電路圖

    EG8010 是一款數(shù)字化的、功能很完善的自帶死區(qū)控制的純正弦波逆變發(fā)生器芯片,應(yīng)用于 DC-DC-AC 兩級(jí)功率變換架構(gòu)或 DC-AC 單級(jí)工頻變壓器升壓變換架構(gòu),外接 12MHz 晶體振蕩器,能實(shí)現(xiàn)高精度、失真和諧波都很小的純正弦波 50Hz 或 60Hz 逆變器專用芯片。該芯片采用 CMOS 工藝,內(nèi)部集成 SPWM 正弦發(fā)生器、死區(qū)時(shí)間控制電路、幅度因子乘法器、軟啟動(dòng)電路、保護(hù)電路、RS232 串行通訊接口和 12832 串行液晶驅(qū)動(dòng)模塊等功能。

    標(biāo)簽: 正弦波逆變器

    上傳時(shí)間: 2022-05-31

    上傳用戶:

  • 中文版-數(shù)字信號(hào)處理的FPGA實(shí)現(xiàn)(第4版)

    1.1  數(shù)字信號(hào)處理技術(shù)概述  1.2  FPGA技術(shù)    1.2.1  按顆粒度分類    1.2.2  按技術(shù)分類    1.2.3  FPL的基準(zhǔn)  1.3  DSP的技術(shù)要求  1.4  設(shè)計(jì)實(shí)現(xiàn)    1.4.1  FPGA的結(jié)構(gòu)    1.4.2  Altera EP4CE115F29C7    1.4.3  案例研究:頻率合成器    1.4.4  用知識(shí)產(chǎn)權(quán)內(nèi)核進(jìn)行設(shè)計(jì)  1.5  練習(xí)第2章  計(jì)算機(jī)算法  2.1  計(jì)算機(jī)算法概述  2.2  數(shù)字表示法    2.2.1  定點(diǎn)數(shù)    2.2.2  非傳統(tǒng)定點(diǎn)數(shù)    2.2.3  浮點(diǎn)數(shù)  2.3  二進(jìn)制加法器    2.3.1  流水線加法器    2.3.2  模加法器  2.4  二進(jìn)制乘法器  2.5  二進(jìn)制除法器    2.5.1  線性收斂的除法算法    2.5.2  快速除法器的設(shè)計(jì)    2.5.3  陣列除法器  2.6  定點(diǎn)算法的實(shí)現(xiàn)  2.7  浮點(diǎn)算法的實(shí)現(xiàn)    2.7.1  定點(diǎn)數(shù)到浮點(diǎn)數(shù)的格式轉(zhuǎn)換    2.7.2  浮點(diǎn)數(shù)到定點(diǎn)數(shù)的格式轉(zhuǎn)換    2.7.3  浮點(diǎn)數(shù)乘法    2.7.4  浮點(diǎn)數(shù)加法    2.7.5  浮點(diǎn)數(shù)除法    2.7.6  浮點(diǎn)數(shù)倒數(shù)    2.7.7  浮點(diǎn)操作集成    2.7.8  浮點(diǎn)數(shù)合成結(jié)果  2.8  MAC與SOP    2.8.1  分布式算法基礎(chǔ)    2.8.2  有符號(hào)的DA系統(tǒng)    2.8.3  改進(jìn)的DA解決方案  2.9  利用CORDIC計(jì)算特殊函數(shù)  2.10  用MAC調(diào)用計(jì)算特殊函數(shù)    2.10.1  切比雪夫逼近    2.10.2  三角函數(shù)的逼近    2.10.3  指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的逼近    2.10.4  平方根函數(shù)的逼近  2.11  快速幅度逼近  練習(xí)第3章  FIR數(shù)字濾波器  3.1  數(shù)字濾波器概述  3.2  FIR理論    3.2.1  具有轉(zhuǎn)置結(jié)構(gòu)的FIR濾波器    3.2.2  FIR濾波器的對(duì)稱性……第4章  IIR數(shù)字濾波器第5章  多級(jí)信號(hào)處理第6章  傅立葉變換第7章  通信系統(tǒng)第8章  自適應(yīng)系統(tǒng)第9章  微處理器設(shè)計(jì)**0章  圖像和視頻處理

    標(biāo)簽: fpga 數(shù)字信號(hào)處理

    上傳時(shí)間: 2022-06-11

    上傳用戶:

  • 12V5A開(kāi)關(guān)電源詳細(xì)資料(包括原理圖+PCB+BOM清單)

    電壓/電流: 11.6---12.6V / 5A輸出功率: ≤60W穩(wěn)壓精度:<±1%負(fù)載效應(yīng):<±1%源效應(yīng):<±0.3%溫度系數(shù):<±0.1%負(fù)載效應(yīng)恢復(fù)時(shí)間:≤200uS開(kāi)機(jī)過(guò)沖幅度:<±10%啟動(dòng)沖擊電流:<150%衡重雜音:<2mV峰峰值雜音:<100mV過(guò)壓保護(hù)

    標(biāo)簽: 開(kāi)關(guān)電源

    上傳時(shí)間: 2022-06-16

    上傳用戶:bluedrops

  • DDS——AD9833應(yīng)用原理圖及程序

    AD9833原理圖,51,stm32程序,可以產(chǎn)生頻率,幅度,相位的三角波,方波,正弦波。

    標(biāo)簽: dds ad9833 原理圖 程序

    上傳時(shí)間: 2022-06-18

    上傳用戶:jason_vip1

  • 硬盤芯片級(jí)維修內(nèi)部資料

    一、引言自1956年IBM推出第一臺(tái)硬盤驅(qū)動(dòng)器IBM RAMAC 350至今已有四十多年了,其間雖沒(méi)有CPU那種令人眼花繚亂的高速發(fā)展與技術(shù)飛躍,但我們也確實(shí)看到,在這幾十年里,硬盤驅(qū)動(dòng)器從控制技術(shù)、接口標(biāo)準(zhǔn)、機(jī)械結(jié)構(gòu)等方面都進(jìn)行了一系列改進(jìn)。正是這一系列技術(shù)上的研究與突破,使我們今天終于用上了容量更大、體積更小、速度更快、性能更可靠、價(jià)格更便宜的硬盤。如今,雖然號(hào)稱新一代驅(qū)動(dòng)器的JAZ,DVD-ROM,DVD-RAM,CD-RW,MO,PD等紛紛登陸大容量驅(qū)動(dòng)器市場(chǎng),但硬盤以其容量大、體積小、速度快、價(jià)格便宜等優(yōu)點(diǎn),依然當(dāng)之無(wú)愧地成為桌面電腦最主要的外部存儲(chǔ)器,也是我們每一臺(tái)PC必不可少的配置之一。二、硬盤磁頭技術(shù)1、磁頭磁頭是硬盤中最昂貴的部件,也是硬盤技術(shù)中最重要和最關(guān)鍵的一環(huán)。傳統(tǒng)的磁頭是讀寫合一的電碗感應(yīng)式磁頭,但是,硬盤的讀、寫卻是兩種截然不同的操作,為此,這種二合一磁頭在設(shè)計(jì)時(shí)必須要同時(shí)兼顧到讀/兩種特性,從而造成了硬盤設(shè)計(jì)上的局限。而MR磁頭(Magnetoresistive heads),即磁阻磁頭,采用的是分離式的磁頭結(jié)構(gòu):寫入磁頭仍采用傳統(tǒng)的磁感應(yīng)磁頭(MR磁頭不能進(jìn)行寫操作),讀取磁頭則采用新型的MR磁頭,即所謂的感應(yīng)寫、磁阻讀。這樣,在設(shè)計(jì)時(shí)就可以針對(duì)兩者的不同特性分別進(jìn)行優(yōu)化,以得到最好的讀/寫性能。另外,MR磁頭是通過(guò)阻值變化而不是電流變化去感應(yīng)信號(hào)幅度,因而對(duì)信號(hào)變化相當(dāng)敏感,讀取數(shù)據(jù)的準(zhǔn)確性也相應(yīng)提高。而且由于讀取的信號(hào)幅度與磁道寬度無(wú)關(guān),故磁道可以做得很窄,從而提高了盤片密度,達(dá)到200MB/英寸2,而使用傳統(tǒng)的磁頭只能達(dá)到20MB/英寸2,這也是MR磁頭被廣泛應(yīng)用的最主要原因。目前,MR磁頭已得到廣泛應(yīng)用,而采用多層結(jié)構(gòu)和磁阻效應(yīng)更好的材料制作的GMR磁頭(Giant Magnetoresistive heads)也逐漸普及。

    標(biāo)簽: 硬盤 芯片維修

    上傳時(shí)間: 2022-06-18

    上傳用戶:

  • 微弱信號(hào)檢測(cè)與辨識(shí)機(jī)制研究

    微弱信號(hào)檢測(cè)的目的是從噪聲中提取有用信號(hào),或用一些新技術(shù)和新方法來(lái)提高檢測(cè)系統(tǒng)輸出信號(hào)的信噪比。本文簡(jiǎn)要分析了常用的微弱信號(hào)檢測(cè)理論,對(duì)小波變換的微弱信號(hào)檢測(cè)原理進(jìn)行了進(jìn)一步的分析。然后提出了微弱信號(hào)檢測(cè)系統(tǒng)的軟硬件設(shè)計(jì),在闡述了系統(tǒng)的整體設(shè)計(jì)的基礎(chǔ)上,對(duì)電路所選芯片的結(jié)構(gòu)和性能進(jìn)行了簡(jiǎn)單的介紹,選用了具有14位分辨率的4路并行A/D轉(zhuǎn)換器AD7865作為模數(shù)轉(zhuǎn)換器,且選用Xilinx公司的Spartan-3系列FPGA邏輯器件作為控制器,控制整個(gè)系統(tǒng)的各功能模塊。同時(shí),利用FPGA設(shè)計(jì)了先入先出存儲(chǔ)器,充分利用系統(tǒng)資源,降低了外圍電路的復(fù)雜度,為電路調(diào)試及制板帶來(lái)了極大的方便,且提升了系統(tǒng)的采集速度和集成度。系統(tǒng)的軟件設(shè)計(jì)采用Verilog HDL語(yǔ)言編程,在Xilinx ISE軟件開(kāi)發(fā)平臺(tái)上完成編譯和綜合,并選用ModelSim SE 6.0完成了波形仿真。關(guān)鍵詞:微弱信號(hào)檢測(cè);信號(hào)調(diào)理:FPGA:AD7865;Verilog HDL信息時(shí)代需要獲取許多有用的信息,多數(shù)科學(xué)研究及工程應(yīng)用技術(shù)所需的信息都是通過(guò)檢測(cè)的方法來(lái)獲取的。若被檢測(cè)的信號(hào)非常微弱,就很容易被噪聲湮沒(méi),那么很難有效的從噪聲中檢測(cè)出有用信號(hào)。微弱信號(hào)在絕對(duì)意義上是指信號(hào)本身非常微弱,而在相對(duì)意義上是指信號(hào)相對(duì)于強(qiáng)背景噪聲而言的非常微弱,也就是指信噪比極低。人們進(jìn)行長(zhǎng)期的研究工作來(lái)檢測(cè)被噪聲所覆蓋的微弱信號(hào),分析噪聲產(chǎn)生的原因以及規(guī)律,且研究被測(cè)信號(hào)的特點(diǎn)、相關(guān)性以及噪聲統(tǒng)計(jì)特性,從而研究出從背景噪聲中檢測(cè)有用信號(hào)的方法。1微弱信號(hào)檢測(cè)(Weak Signal Detection)技術(shù)2.3.41主要是提高信號(hào)的信噪比,從噪聲中檢測(cè)出有用的微弱信號(hào)。對(duì)于這些微弱的被測(cè)量(如:微振動(dòng)、微流量、微壓力、微溫差、弱光、弱磁、小位移、小電容等),大多數(shù)都是利用相應(yīng)的傳感器將微弱信號(hào)轉(zhuǎn)換為微弱電流或者低電壓,再經(jīng)過(guò)放大器將其幅度放大到預(yù)期被測(cè)量的大小。

    標(biāo)簽: 微弱信號(hào)檢測(cè)

    上傳時(shí)間: 2022-06-18

    上傳用戶:canderile

  • 高級(jí)音響電路設(shè)計(jì)

    摘要本文以音響放大系統(tǒng)為研究對(duì)象,以電子技術(shù)基本理論為基礎(chǔ),結(jié)合當(dāng)前模擬電子應(yīng)用技術(shù),對(duì)音響放大系統(tǒng)進(jìn)行了分析和研究,針對(duì)現(xiàn)代人群對(duì)功放效率的要求和特征,設(shè)計(jì)出該音響放大系統(tǒng)。音響的音質(zhì)是音響最重要的環(huán)節(jié),由于我國(guó)在高級(jí)音響的設(shè)計(jì)上起步較晚,對(duì)新技術(shù)的開(kāi)發(fā)與應(yīng)用遠(yuǎn)遠(yuǎn)落后于國(guó)外的發(fā)大國(guó)家,從放大電路的設(shè)計(jì),揚(yáng)聲器的設(shè)計(jì),對(duì)音像的還原,降低信噪比,低音的厚重感等等都遠(yuǎn)遠(yuǎn)超出我國(guó)自主產(chǎn)品,但是我國(guó)的音響企業(yè)已認(rèn)識(shí)到技術(shù)的不足,正在加大研發(fā)的投入,培養(yǎng)技術(shù)人才,努力學(xué)習(xí)和趕超國(guó)外的先進(jìn)技術(shù)。本文對(duì)現(xiàn)代高級(jí)音響設(shè)計(jì)的工藝有初步的了解,研究高級(jí)音響設(shè)計(jì)的電路組成,能夠理解電路圖的原理,對(duì)新技術(shù)、新知識(shí)進(jìn)行研究學(xué)習(xí),并將所學(xué)用于實(shí)踐在現(xiàn)代音有普及中,人們因生活層次、文化習(xí)俗、音樂(lè)修養(yǎng)、欣賞口味的不同,令對(duì)相通電氣指標(biāo)的音響設(shè)備得出不同的評(píng)價(jià)。所以,就高保真度功放而言,應(yīng)該達(dá)到電氣指標(biāo)與實(shí)際聽(tīng)音指標(biāo)的平衡與統(tǒng)一。隨者技術(shù)的發(fā)展,人民生活水平的提高,人們對(duì)音頻技術(shù)的功放的效率要求隨之提高。模擬的功率放大器經(jīng)過(guò)了幾十年的發(fā)展,在這方面的技術(shù)已經(jīng)相當(dāng)成熟。正因?yàn)檫@樣,數(shù)字功放應(yīng)運(yùn)而生。近年來(lái),利用脈寬調(diào)劑原理設(shè)計(jì)的D類功放也進(jìn)入了音響領(lǐng)域".國(guó)外半導(dǎo)體一直專注于研發(fā)高性能的放大器與比較器,目前已成功推出一系列型號(hào)齊全的運(yùn)算放大器,其中包含基本的芯片以及特殊應(yīng)用標(biāo)準(zhǔn)產(chǎn)品(ASSP),以滿足市場(chǎng)上對(duì)高精度、高速度、低電壓及低功率放大器的需求。另外國(guó)外在數(shù)字音頻功率放大器領(lǐng)城進(jìn)行了二三十年的研究,六十年代中期,日本研制出8bit數(shù)字音頻功率發(fā)大器。1893年,M.B.Sandler等學(xué)者提出D類數(shù)字PCM功率發(fā)大器的基本結(jié)構(gòu)。主要是圍繞如何將PCM信號(hào)轉(zhuǎn)化為PWM信號(hào)。把信號(hào)的幅度信號(hào)用不同的脈沖寬度來(lái)表示。此后,研究的焦點(diǎn)是降低其時(shí)鐘頻率,提高音質(zhì)。隨若數(shù)字信號(hào)處理(DSP)技術(shù)和新型功率器件及應(yīng)用的發(fā)展,開(kāi)始實(shí)用化的16位數(shù)字音額功放成為可能。

    標(biāo)簽: 音響電路

    上傳時(shí)間: 2022-06-18

    上傳用戶:

  • 基于鎖相放大器的微弱信號(hào)檢測(cè)研究

    摘要:微弱信號(hào)檢測(cè)是隨著工程應(yīng)用而不斷發(fā)展的一門學(xué)科。近年來(lái),微弱信號(hào)檢測(cè)相關(guān)研究已經(jīng)成為一個(gè)熱點(diǎn)研究領(lǐng)域,具體表現(xiàn)在對(duì)微弱信號(hào)檢測(cè)方法的探尋、對(duì)微弱信號(hào)檢測(cè)系統(tǒng)的設(shè)計(jì)、對(duì)微弱信號(hào)檢測(cè)儀器的研發(fā)。本文中主要研究了利用鎖相放大器進(jìn)行有用信號(hào)提取的微弱信號(hào)檢測(cè)原理與實(shí)現(xiàn)方法。首先介紹了微弱信號(hào)檢測(cè)的基本理論與常見(jiàn)的幾種檢測(cè)方法,重點(diǎn)介紹了利用數(shù)字鎖相放大器進(jìn)行信號(hào)檢測(cè)的原理。在此基礎(chǔ)上,結(jié)合數(shù)字鎖相放大器的相關(guān)檢測(cè)原理,給出了數(shù)字鎖相放大器的整體設(shè)計(jì)方案,著重從相關(guān)檢測(cè)原理算法和移相算法方面對(duì)數(shù)字鎖相放大器的設(shè)計(jì)作了深入探討。重點(diǎn)研究了采樣頻率與相關(guān)運(yùn)算結(jié)果的關(guān)系,在設(shè)計(jì)的過(guò)程中先使用MATLAB進(jìn)行算法上的模擬,從模擬結(jié)果發(fā)現(xiàn)參考信號(hào)為方波而采樣頻率與信號(hào)頻率成一定關(guān)系時(shí),系統(tǒng)相關(guān)運(yùn)算存在固有誤差。為減少該誤差,提出了將動(dòng)態(tài)采樣率的方法引入數(shù)字鎖相放大器設(shè)計(jì)中,運(yùn)算發(fā)現(xiàn)動(dòng)態(tài)采樣的采樣頻率數(shù)越多,奇點(diǎn)產(chǎn)生的誤差越少,有效地解決奇點(diǎn)問(wèn)題。最后,使用LabVIEW對(duì)設(shè)計(jì)的系統(tǒng)進(jìn)行仿真測(cè)試。測(cè)試結(jié)果表明該數(shù)字鎖相放大器在信號(hào)幅度為5V、噪聲標(biāo)準(zhǔn)差小于等于50時(shí)(SWR=.34.04dB),能有效地檢測(cè)出頻率為500kHz以下的信號(hào),系統(tǒng)檢測(cè)結(jié)果與理論計(jì)算值的相對(duì)誤差基本不超過(guò)2%。

    標(biāo)簽: 鎖相放大器 微弱信號(hào)檢測(cè)

    上傳時(shí)間: 2022-06-18

    上傳用戶:

  • 信號(hào)檢測(cè)與估計(jì)在微弱信號(hào)檢測(cè)中的應(yīng)用

    【摘要】首先,文中指出一般對(duì)于“微弱信號(hào)”的理解有兩個(gè)方面的含義以及微弱信號(hào)檢測(cè)技術(shù)的應(yīng)用,提到了微弱信號(hào)檢測(cè)技術(shù)的首要任務(wù)是提高信噪比。文章介紹了一些傳統(tǒng)微弱量的檢測(cè)方法,詳細(xì)介紹了基于Duffing振子的混沌弱信號(hào)檢測(cè)方法。利用統(tǒng)計(jì)信號(hào)檢測(cè)的理論對(duì)混沌檢測(cè)系統(tǒng)的虛警概率、檢測(cè)概率和檢測(cè)信噪比進(jìn)行分析,進(jìn)而利用上述特性研究了混沌弱信號(hào)幅度的估計(jì)方法;本文還講述了Lyapunov指數(shù)的統(tǒng)計(jì)特性與弱信號(hào)檢測(cè)和估計(jì)之間的關(guān)系。【關(guān)鍵字】微弱信號(hào) 非線性 Duffing振子 信號(hào)檢測(cè)與估計(jì)1.1引言這些天在網(wǎng)上搜集了一些關(guān)于用非線性系統(tǒng)進(jìn)行微弱信號(hào)檢測(cè)的一些資料,讀了幾遍之后也若有所思。最初看的是基于非線性系統(tǒng)的微弱通信信號(hào)檢測(cè)關(guān)鍵技術(shù)研究的項(xiàng)目計(jì)劃申報(bào)書,老實(shí)說(shuō),讀第一遍時(shí)很多都是云里霧里,由于每天讀幾頁(yè)斷斷續(xù)續(xù)加上以前本科沒(méi)有接觸過(guò)這方面的內(nèi)容導(dǎo)致第一遍讀下來(lái)在腦海中并沒(méi)有形成整體的輪廓,但強(qiáng)烈的求知欲和好奇心讓我又讀了第二遍,接著看了混沌振子檢測(cè)引論,這才對(duì)非線性系統(tǒng)進(jìn)行微弱信號(hào)的檢測(cè)有了初步的認(rèn)識(shí)。

    標(biāo)簽: 微弱信號(hào)檢測(cè)

    上傳時(shí)間: 2022-06-19

    上傳用戶:xsr1983

  • 微波直接射頻調(diào)制技術(shù)研究

    直接調(diào)制將基帶信號(hào)直接轉(zhuǎn)換為射頻信號(hào),不需要二次頻率變換,與上變頻方式相比系統(tǒng)結(jié)構(gòu)簡(jiǎn)單,降低了對(duì)濾波器的要求,具有體積小,重量輕,成本低等明顯的優(yōu)點(diǎn).1/Q正交調(diào)制的關(guān)鍵指標(biāo)是誤差矢量(EVM:Error Vector Magnitude).本文研究的是微波波段的直接調(diào)制技術(shù)。利用基帶對(duì)L波段和s波段幾個(gè)不同的載波進(jìn)行直接調(diào)制。首先,在闡述1/Q正交調(diào)制基本原理的基礎(chǔ)上,通過(guò)對(duì)誤差矢量和鄰近信道功率泄漏的詳細(xì)分析,定性、定量地討論了各種非理想電路因素(如相位不平衡、幅度不平衡、直流偏差等)對(duì)調(diào)制器性能的影響;其次,介紹了鎖相環(huán)的工作原理和基本組成部分,包括鎖相環(huán)的設(shè)計(jì)和環(huán)路濾波器的設(shè)計(jì),特別詳述了電荷泵鎖相頻率源;第三,介紹了采用直接調(diào)制技術(shù)模擬衛(wèi)星信號(hào)的射頻前端的設(shè)計(jì);最后,對(duì)整個(gè)直接射頻調(diào)制系統(tǒng)進(jìn)行測(cè)試,結(jié)果基本上達(dá)到了課題要求。關(guān)鍵詞:微波鎖相環(huán),相位噪聲,直接調(diào)制

    標(biāo)簽: 射頻調(diào)制

    上傳時(shí)間: 2022-06-20

    上傳用戶:

主站蜘蛛池模板: 丹巴县| 通海县| 新兴县| 基隆市| 怀化市| 嘉荫县| 郧西县| 东安县| 永安市| 临沭县| 富锦市| 礼泉县| 平阴县| 拜泉县| 织金县| 习水县| 乌拉特中旗| 贵德县| 江阴市| 墨竹工卡县| 海丰县| 元氏县| 扬州市| 吉安市| 乐业县| 青龙| 会宁县| 凌云县| 周口市| 湘潭县| 永康市| 汾阳市| 龙陵县| 滦平县| 会宁县| 泽州县| 雅安市| 永德县| 孝感市| 巨野县| 石城县|