亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

蟲蟲首頁| 資源下載| 資源專輯| 精品軟件
登錄| 注冊

幅頻均衡

  • 低場磁共振FID信號放大電路的分析與研究.rar

    由于低場磁共振自由感應(FID-Free Induction Decay)信號十分微弱,信噪比低,所以信號放大電路的設計、調試具有一定的困難.該文首先對低場磁共振電路系統的各個功能模塊進行了分析,并估算了低場磁共振的信號幅值,然后重點對天線接口和前置放大兩個電路模塊進行了分析研究.天線接口電路是射頻發射電路、信號接收電路與磁體天線的接口電路.針對接收信號弱、信噪比低的情況,天線接口電路不但要實現天線的三個狀態(發射、泄放、接收)間的切換,而且要對信號進行無源放大.該文在完成了天線接口電路功能分析后,建立了簡化模型,然后對其參數進行分析計算,得出了滿足最大放大倍數和期望帶寬時的調試指導參數,還據此設計了校驗信號發生電路.前置放大電路主要完成磁共振FID信號的有源放大.該文在進行了方案討論后,給出了具體的前置放大電路,并對其工作狀態進行了靜態工作點計算和動態仿真分析,計算了增益系數,分析了帶寬,并作了噪聲分析.該文還參照高頻電路的設計特點,分析了低場磁共振信號放大電路的噪聲干擾的來源、種類;討論了器件選擇、電路布板等方面的注意事項;給出了減小噪聲干擾的一些具體措施.

    標簽: FID 磁共振 信號放大電路

    上傳時間: 2013-06-01

    上傳用戶:hanli8870

  • 超聲波電機精密定位系統及驅動控制研究.rar

    超聲波電機(Ultrasonic Motor,簡稱USM)是近二十年來發展起來的一種新型驅動裝置,該電機不同于傳統的電磁感應電機,它是利用壓電陶瓷的逆壓電效應激發超聲振動,借助彈性體諧振放大,通過摩擦耦合產生旋轉運動或直線運動.這種電機的具有響應快、結構緊湊、低轉速、大力矩、不受電磁干擾、斷電自鎖等優點,在微型機械、機器人、精密儀器、家用電器、航空航天、汽車等方面有著廣泛的應用前景.隨著超聲波電機的推廣應用和產業化發展的需要,對超聲波電機的驅動和控制技術的研究就非常必要了,小型化、通用化、高性能的驅動電源和簡單而又實用的控制技術已成為國內外研究的熱點.該文對于單一的定位控制,研究一種簡單且控制精度高的控制算法,結合所研制的縱扭復合型超聲波電機樣機,實現了高精度(0.010度)的定位控制,另對基于高性能DSP的驅動電源進行了初步的探討和研究,研制了通用性較高的驅動電源.該文開展的主要研究工作和取得的成果如下:1.簡要地介紹了超聲波電機的原理、發展歷史和特點,重點分析了超聲波電機驅動電源和定位控制的研究進展和存在的問題,從而引出該碩士論文的研究意義和主要內容.2.從理論和實驗上揭示這種電機具有的高分辨率和步進特性實質,提出了利用此特性實現高精度的定位控制策略——步進定位法,并分析了影響其定位精度的因素,結合所研制的縱扭復合型超聲波電機樣機,實現了高精度(0.010度)的定位控制,并確定了相關控制參數的選擇準則.3.簡要介紹了常用開關變換器結構,設計了以MOSFET為開關器件的半橋式逆變功率電路.介紹了高性能DSP(TMS320LF2407)為核心的控制信號發生電路和以UC3842為控制芯片的可調壓直流電源,結合控制電路和功率變換電路獲得了驅動超聲波電機所需兩項幅值、頻率、相位可調的交變方波,具有較高的通用性,為進一步開展運用較復雜控制策略的超聲波電機位置和速度伺服控制研究打下一定基礎.

    標簽: 超聲波 電機 控制研究

    上傳時間: 2013-04-24

    上傳用戶:hfmm633

  • 數字式能量回饋系統的研究.rar

    隨著中國經濟的迅速發展,能源問題在當今社會中受到越來越多的關注.能量回饋系統可以在減緩矛盾方面發揮重要作用,無論在減少能源的浪費方面或是在新能源的利用開發上.主要運用在功率電子負載、分布式發電和電機制動能饋等場合.該文主要研究了能量回饋系統.電力電子的逆變技術是能量回饋系統的核心部分,該文講述了電壓型逆變電路和電流型逆變電路在能量回饋系統中的工作實現原理.電壓型逆變電路是該文的重點,針對中國電網的形式,對單相和三相逆變電路作了分析,討論了幾種控制策略的選擇,提出間接電流控制中相位幅值分別控制方法和直接電流控制中滯環控制方法在逆變器并網中的實現意義.電流型有源逆變利用移相調節,適合大功率場合.文章的最后部分比較分析電流型和電壓型電路的性能特點.數字化是控制領域發展的趨勢,在具體實現能量回饋系統的過程中,該文也充分運用數字式控制方式.在電流型逆變系統中,運用可編程序控制器(PLC)作為控制核心,并在MCGS組態平臺實現和工控機的通訊.在電壓型逆變系統中,將數字信號處理器(DSP)作為控制中心,實現外圍電路工作及其控制.在以上基礎上,分別研制了一臺大功率晶閘管電流型有源逆變器和一臺電壓型并網逆變器.

    標簽: 數字式 能量回饋

    上傳時間: 2013-06-20

    上傳用戶:lingduhanya

  • 開關磁阻電機的減振降噪和低轉矩脈動研究.rar

    開關磁阻電機(SR電機)驅動系統(SRD)是一種先進的機電一體化裝置,但是其較大的振動噪聲和轉矩脈動問題制約了SRD的廣泛應用。本文以減小SR電機振動噪聲和轉矩脈動為主題展開理論分析和實驗研究。主要內容有:由于徑向力引起的定子徑向振動是SR電機噪聲的主要根源,因此徑向力的分析和計算是研究SR電機振動噪聲的基礎。本文利用磁通管法推導出徑向力的解析表達式,定性分析了徑向力與電機結構參數等之間的關系。根據虛位移原理,推導出基于矢量磁勢的電磁力計算公式。該計算方法求解電磁力時只需進行一次磁場計算,不但減小了計算量,同時計算精度較傳統虛位移法高。利用這一計算方法,求出了實驗樣機的轉矩及徑向力的精確數值解。針對在SRD性能仿真時,傳統的非線性插值不但耗時,而且對有限元計算數據量要求高的問題,本文利用人工神經網絡強大的非線性模型辨識能力,成功進行了SR電機磁鏈反演和轉矩計算的模型訓練,最后建立了基于人工神經網絡的SR電機精確解析數學模型。因為SR電機本體結構形式的選擇問題與振動噪聲大小有著密切的關系。本文從噪聲輻射和振動幅值角度探討了SR電機主要尺寸的確定;接著從對稱性、力波階數等角度研究了SR電機相數及繞組連接方式、極數、并聯支路數的選擇問題。并對一些常用的降低電機機械噪聲的措施和方法進行了綜述。系統振動特性的研究對于減小振動噪聲十分重要。本文從振動系統的運動方程出發,導出了從激振力到振動加速度的傳遞函數和系統的自由振動解;然后利用機電類比法得出了SR電機定子系統的固有頻率以及振動振幅的解析解,定性分析了影響振動振幅的各種因素;最后利用基于能量法的有限元解法,通過建立不同的散熱筋結構形式、高度、根數以及形狀的SR電機三維有限元模型,分析得出了最有利于降噪和散熱的散熱筋結構是高度高、根數多、上窄下寬的梯形截面的周向散熱筋的結論。通過建立不同繞組裝配工藝下的SR電機三維有限元模型,分析得出了加強繞組剛度可以提高系統低階固有頻率的結論。通過比較實驗樣機的模態分析結果和運行實驗結果,證實了模態分析的有效性。仿真是計算SRD系統性能和預估電機振動的有效手段。本文在用MATLAB建立SRD系統的非線性動態仿真模型的基礎上,對SRD系統進行了穩態性能仿真、動態性能仿真以及負載突變仿真。接著利用穩態性能仿真,綜合考慮最大平均轉矩和效率這兩個優化目標,對SR電機的開關角進行了優化。最后結合由磁場有限元計算得到的徑向力數據表和穩態性能仿真,通過非線性插值得到徑向力的波形,然后對徑向力波形進行了頻譜分析,從而找到其主要的諧波分量。在電機設計階段避免徑向力波主要頻譜分量與SR電機定子的固有頻率接近而引起共振是降低SR電機噪聲的首要條件。合適的控制策略對于SR電機減振降噪是必不可少的。本文理論推導出三步換相法的時間參數取值公式。仿真證明本取值公式較原先文獻的結論在阻尼比較小時有更好的減振效果。針對SR電機運行中可能出現多個模態振形被激發出來的情況,利用數值優化法對三步換相法的時間參數進行了優化,使得減振效果整體最佳,所提的數值優化方法對兩步換相法同樣有效。在分析已有的直接瞬時轉矩控制的基礎上,針對其不足之處,提出了轉矩定頻控制取代內滯環的方法、開始重疊區域的轉矩控制方法、最佳開關角度二次優化法和時間參數優化的三步換相法等新的控制方案。動態仿真證明這些方案是切實有效的,達到了預期效果。最后在直接瞬時轉矩控制的每一次轉矩斬波都使用三步換相法,和在相關斷時刻根據實際電平靈活選用兩步或三步換相法以減小電機振動噪聲,并提出了考慮減振要求的開關頻率設計方法,最終形成了一套完整的降低振動噪聲和轉矩脈動控制策略。設計并研制了基于TMS320LF2407DSP的SR電機控制器。根據控制策略要求,選用了不對稱半橋功率電路拓撲結構;出于降低成本以及提高可靠性考慮,采用了MOSFET雙路并聯電路方案。在控制軟件中實現了本文所提出的降低SR電機振動噪聲和轉矩脈動控制策略。本文最后對實驗樣機進行了靜態轉矩的測量實驗,對比轉矩測量值與轉矩有限元計算值,驗證了磁場有限元計算的有效性。然后對實驗樣機進行了空載與負載、電流控制與轉矩控制、低速斬波與高速單波、是否采用兩步或三步換相法等一系列對比運行實驗,對比各種實驗結果,充分證實了本文所提出的降低振動噪聲和轉矩脈動控制策略的有效性。本課題組承擔了國家十·五863計劃電動汽車重大專項:“EQ6110HEV混合動力城市公交車用電機及其控制系統”(2001AA501421)。本文的研究是在該項目的資助下完成,并且本文關于電機本體結構形式、散熱筋結構和機械降噪措施等的結論已在該項目的60kW實驗樣機上得到證實。

    標簽: 開關磁阻電機 降噪

    上傳時間: 2013-07-05

    上傳用戶:13081287919

  • 感應電機雙饋調速系統穩定性分析與仿真.rar

    感應電機雙饋調速系統是一種性能優越的電力拖動控制系統,它不僅降低了功率變換器的額定功率,而且能夠通過調節轉子電壓的幅值、相位和頻率來實現電機定子側功率因數的調節。由于系統控制方法的靈活性和多樣性,使得雙饋電機在工業傳動領域、風力發電以及抽水蓄能電站中擁有廣闊的應用前景。 本文主要對雙饋電機矢量控制系統進行了相關研究。首先,比較雙饋調速系統和傳統的異步電機變頻調速系統的異同點,闡述了雙饋電機的工作原理,各種不同的磁場定向控制方式,并分析了它的穩態特性;接著,利用雙饋調速系統控制方法靈活多樣的特點,構建了一套交直交變換器勵磁的矢量調速系統,系統模型建立在以轉子磁鏈定向了同步旋轉的坐標軸系中,可以實現雙饋電機轉速與無功功率的解耦控制,同時,控制交直交變換器能量的雙向流動,雙饋電機可以在超同步、亞同步方式下運行,通過計算機仿真,驗證了這種控制方式的可行性和正確性;隨后,闡述了雙饋電機的功角特性,通過功角特性分析了電機的靜態穩定性,并建立了雙饋電機的開環電壓控制、開環電流控制以及矢量控制的小信號模型,對上述幾種控制方式下的雙饋電機暫態穩定性進行了深入研究;最后,綜合上述討論結果,設計了雙饋電機的控制系統硬件部分,并給出了部分軟件設計流程。

    標簽: 感應電機 雙饋 仿真

    上傳時間: 2013-07-25

    上傳用戶:Wwill

  • 變壓器繞組參數辨識研究.rar

    電力變壓器是電力系統中及其重要的電氣設備,它的安全運行直接關系到電力系統的穩定。變壓器長期在電網中運行會發生各種故障和事故,一旦遭到破壞,損失巨大。通過預防性試驗和油中溶解氣體的氣相色譜分析結果判斷變壓器的絕緣狀況,對防止事故的發生有很大作用,但定期的預防性試驗可能出現過多的維修和不必要的停機,又不能及時發現故障;而變壓器在線監測可以及早發現變壓器故障,避免事故的發生,而且可以降低維護成本。 變壓器中最常發生故障的部位是繞組,它的損壞率約占整個變壓器故障的60%~70%。診斷繞組變形的方法中,頻率響應法、阻抗分析法、低壓脈沖法雖然有可取之處,但是都屬于離線方法,不能及時發現變壓器的故障,不適于在線測量;通過實時計算變壓器繞組短路電抗來在線診斷變壓器故障是一種有效的在線監測方法。 本文根據變壓器繞組的短路電抗在正常運行時不發生變化,而在變壓器內部故障時要發生變化的特性,應用辯識理論,利用變壓器三相電壓、電流的測量值來辨識繞組的短路電抗。把辨識結果對比正常時的三相繞組的短路電抗,可以發現繞組是否異常及故障發生的部位,保證變壓器元件得到及時更換,防止變壓器非正常退出運行。 本文采用傅立葉算法來計算變壓器三相電壓、電流采樣信號的基波分量的幅值與相角,實現變壓器繞組的參數辨識,此時并沒有考慮衰減直流分量。經過分析,當采樣信號中存在衰減直流分量時傅立葉算法就會產生誤差,而遞推最小二乘法和卡爾曼濾波效果很好。 最后本文介紹了變壓器繞組參數辨識的實際應用與誤差分析,分析了系統中軟件、硬件方面的問題對測量短路電抗造成的影響;以及參數辨識的軟件設計和運行試驗,驗證了方案的可行性。

    標簽: 變壓器繞組 參數辨識

    上傳時間: 2013-07-29

    上傳用戶:xyipie

  • DIY小型LED點陣顯示系統.rar

    DIY小型LED點陣顯示系統 本源碼包含LED3216點陣顯示一幅圖片,LED3216點陣模擬北京奧運會開幕式擊缶畫面,LED3216點陣流動顯示漢字..是DIY技術人員的必備資料.

    標簽: DIY LED 點陣顯示

    上傳時間: 2013-04-24

    上傳用戶:lifangyuan12

  • 電壓源型PWM逆變器死區效應補償策略研究.rar

    電壓源型PWM逆變器在當前的工業控制中應用越來越廣泛,在其應用領域中,交流電動機的運動控制是其很重要的組成部分。在PWM逆變器的控制過程中,設置死區是為了避免逆變器的同一橋臂的兩個功率開關器件發生直通短路。盡管死區時間很短,然而當開關頻率很高或輸出電壓很低時,死區將使逆變器輸出電壓波形發生很大畸變,進而導致電動機的電流發生畸變,電機附加損耗增加,轉矩脈動加大,最終導致系統的控制性能降低,甚至可能導致系統不穩定。為此,需要對逆變器的死區進行補償。本文針對連續空間矢量調制提出了一種改進的減小零電流鉗位和寄生電容影響的死區效應補償方法;針對斷續空間矢量調制提出了通過改變空間矢量作用時間,來改變驅動信號脈沖寬度的補償方法,并對這兩種方法進行了理論分析和仿真研究。 本文首先詳細分析了死區時間對逆變器輸出電壓和電流的影響,以及功率開關器件寄生電容對輸出電壓的影響。其次對已提出的減小零電流鉗位和寄生電容影響的死區效應補償方法進行了理論分析,該方法先計算出補償電壓,再對由零電流鉗位現象引起的補償電壓極性錯誤進行校正,極性校正的參考量為d軸補償電壓的幅值,然而補償電壓的大小隨電流的變化而變化,因此該方法存在電壓極性校正時參考量為變化量的缺點,而且該方法只適用于id=0的控制方式,適用性較差。針對這些問題,本文提出了改進的減小零電流鉗位和寄生電容影響的補償方法,改進后的方法是先對由零電流鉗位現象引起的電流極性錯誤進行校正,然后再計算補償電壓的大小,電流極性校正時的參考量為三相電流極性函數轉化到γ-坐標系的函數sγ的幅值,sγ的幅值與補償電壓大小無關為恒定值,而且適用于任何控制方式,適應性強。再次把改進的減小零電流鉗位和寄生電容影響的死區效應補償方法應用到PMSM矢量控制系統中,采用MATLAB和Pspice兩種方法進行了仿真研究,仿真結果驗證了補償方法的有效性。對兩種仿真結果的對比分析,表明PSpice模型能更好的模擬逆變器的非線性特性。 最后,文章分析了連續空間矢量調制和斷續空間矢量調制的輸出波形的區別和死區對兩種波形影響的不同。針對DSP芯片TMS320LF2407A硬件產生的斷續SVPWM波,提出了根據電壓矢量和電流矢量的相位關系,通過改變空間矢量作用時間,來改變驅動信號脈沖寬度,對其進行死區補償的方法。給出了基本空間矢量作用時間調整的實現方法,并建立了MATLAB仿真模型,進行仿真研究,仿真結果驗證了補償方法的正確性和有效性。

    標簽: PWM 電壓源 死區

    上傳時間: 2013-06-04

    上傳用戶:330402686

  • 電子式互感器的關鍵技術及其相關理論研究.rar

    電子式互感器與傳統電磁式互感器相比,在帶寬、絕緣和成本等方面具有優勢,因而代表了高電壓等級電力系統中電流和電壓測量的一種極具吸引力的發展方向。隨著信息技術的發展和電力市場中競爭機制的形成,電子式互感器成為人們研究的熱點;越來越多的新技術被引入到電子式互感器設計中,以提高其工作可靠性,降低運行總成本,減小對生態環境的壓力。本文圍繞電子式互感器實用化中的關鍵技術而展開理論與實驗研究,具體包括新型傳感器、雙傳感器的數據融合算法、數字接口、組合式電源、低功耗技術和自監測功能的實現等。 目前電子式電流互感器(ECT)大多數采用單傳感器開環結構,對每個環節的精度和可靠性的要求都很高,嚴重制約了ECT整體性能的提高,影響其實用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數字積分器,在此基礎上設計了一種基于LPCT和PCB空心線圈的組合結構的新型電流傳感器。該結構具有并聯的特點,結合了這兩種互感器的優點,采用數據融合算法來處理兩路信號,實現高精度測量和提高系統可靠性,并探索出辨別LPET飽和的新方法。試驗和仿真結果表明,這種新型電流傳感器可以覆蓋較大的電流測量范圍,達到IEC 60044-8標準中關于測量(幅值誤差)、保護(復合誤差)和暫態響應(峰值)的準確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結構和輸出信號等方面與傳統的電壓互感器有很大不同,本文設計了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過試驗研究與計算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測試結果表明,設計的10kV精密電阻分壓器的準確度滿足IEC 60044-7標準要求,可達0.2級。 電子式互感器的關鍵技術之一是內部的數字化以及其標準化接口,本文以10kV組合型電子式互感器為對象設計了一種實用化的數字系統。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數據融合算法的LPCT和PCB空心線圈的組合結構。本文首先解決了互感器間的同步與傳感器間的內部同步問題,進而依照IEC61850-9-1標準,實現了組合型電子式互感器的100M以太網接口。 電子式電流互感器在高電壓等級的應用研究中,ECT高壓側的電源問題是關鍵技術之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過一個特制的電流互感器(取電CT),直接從高壓側母線電流中獲取電能。在取電CT和整流橋之間設計一個串聯電感,大大降低了施加在整流橋上的的感應電壓并限制了取電CT的輸出電流,起到了穩定電壓和保護后續電路的作用。激光電源方案以先進的光電轉換器、半導體激光二極管和光纖為基礎,單獨一根上行光纖同時完成供能和控制信號的傳輸,在不影響光供能穩定性的情況下,數據通信完成在短暫的供能間隔中。在高電位端控制信號通過在能量變換電路中增加一個比較器電路被提取出來。本文還提出了一種將兩種供能方式結合使用的組合電源,并設計了這兩種電源之間的切換方法,解決了取電CT電源的死區問題,延長了激光器的使用壽命。作為綜合應用實例,設計并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術的高壓電子式電流互感器。互感器高壓側的一次轉換器能夠提供兩路傳感器數據通道,并且具有溫度補償和采集通道的自校正功能,在更寬溫度、更大電流范圍內保證了極高的測量精度:互感器低電位端的二次轉換器具有數字和模擬接口,可以接收數據并發送命令來控制一次轉換器,包括同步和校正命令在內的數據信號可以通過同一根供能光纖傳送到一次轉換器。該互感器具有在線監測功能,這種預防性維護和自檢測功能夠提示維護或提出警告,提高了可靠性。系統測試表明:具有低功耗光纖發射驅動電路的一次轉換器平均功耗在40mw以下:上行光纖中通信波特率可以達到200kb/s,下行光纖中更是高達2Mb/s;系統準確度同時滿足IEC6044-8標準對0.2S級測量和5TPE級保護電子式互感器的要求。

    標簽: 電子式互感器 關鍵技術

    上傳時間: 2013-06-09

    上傳用戶:handless

  • 常見的圖像處理matlab源代碼.rar

    學習圖像必備的,方便你的學習!包含:中值濾波,直方圖,維納濾波,均衡濾波等等……

    標簽: matlab 圖像處理 源代碼

    上傳時間: 2013-04-24

    上傳用戶:三人用菜

亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲美女区一区| 极品少妇一区二区三区精品视频| 亚洲电影第1页| 亚洲国产精品久久久久秋霞影院| 亚洲国产成人久久| 一区二区三区日韩| 久久深夜福利免费观看| 国产精品黄色| 亚洲精品国产精品久久清纯直播| 久久国产天堂福利天堂| 欧美日韩在线一区二区三区| 在线观看不卡av| 欧美一区二区高清| 欧美三级精品| 亚洲精品久久7777| 蜜桃av一区二区| 国产午夜精品一区二区三区视频| 99re6热只有精品免费观看| 久久久91精品| 国产区亚洲区欧美区| 亚洲激情一区二区| 久热综合在线亚洲精品| 国产婷婷97碰碰久久人人蜜臀| 亚洲作爱视频| 欧美精品久久一区二区| 尤物精品在线| 久久亚洲精选| 在线观看视频一区| 久热综合在线亚洲精品| 韩国av一区二区| 久久久亚洲成人| 国产有码一区二区| 久久国产精品久久久久久电车| 国产精品一区二区三区四区| 亚洲天堂成人在线视频| 欧美日韩亚洲高清| 这里只有精品视频在线| 欧美三级韩国三级日本三斤| 日韩亚洲成人av在线| 欧美日韩国产综合在线| 一区二区三区国产| 国产精品日本精品| 先锋影音国产一区| 国外成人性视频| 老司机一区二区三区| 亚洲高清色综合| 欧美激情在线| 亚洲一区免费视频| 狠狠干狠狠久久| 欧美成人精品一区二区三区| 亚洲精品1234| 国产精品色网| 久久久久久综合网天天| 亚洲激情影视| 国产精品一级| 另类av一区二区| 99国产麻豆精品| 国产亚洲精品bv在线观看| 久久久999成人| 日韩视频在线观看免费| 国产精品日韩久久久| 久久久久久久久久久成人| 亚洲国产天堂久久综合| 国产精品久久久久一区| 久久综合九色综合欧美就去吻 | 亚洲午夜国产成人av电影男同| 国产精品欧美日韩一区| 美女精品一区| 欧美亚洲视频在线看网址| 在线观看日韩av| 国产精品久久久久一区二区三区| 久久成人精品电影| 99视频日韩| 国产亚洲一区在线| 欧美日韩亚洲一区二区三区在线观看 | 午夜伦欧美伦电影理论片| 黑人一区二区三区四区五区| 欧美另类变人与禽xxxxx| 久久精品国产在热久久 | 欧美日韩国产丝袜另类| 欧美一区午夜视频在线观看| 亚洲精品一区二区三区av| 国产亚洲欧美一区| 欧美性大战久久久久久久蜜臀| 美女主播精品视频一二三四| 香蕉久久久久久久av网站 | 国产精品久久久对白| 久久一日本道色综合久久| 亚洲天堂av在线免费| 亚洲人成在线影院| 国内自拍一区| 国产精品手机在线| 欧美日韩免费观看一区三区 | 欧美在线关看| 亚洲手机在线| 99亚洲伊人久久精品影院红桃| 在线观看国产精品网站| 国产亚洲在线| 国产区在线观看成人精品| 国产精品亚洲视频| 国产精品v片在线观看不卡| 欧美日韩成人网| 欧美日韩国产精品专区| 欧美裸体一区二区三区| 欧美看片网站| 欧美日韩视频在线一区二区观看视频 | 国产精品高潮呻吟久久av无限| 欧美精品在线一区| 欧美黄色影院| 欧美精品二区| 欧美久久久久久久久久| 欧美另类一区| 国产精品福利在线观看网址| 国产精品久久久久毛片软件| 国产精品一区在线观看| 国产亚洲人成网站在线观看| 黄色国产精品| 91久久精品国产91久久性色| 亚洲精品精选| 午夜精品福利电影| 久久久精品一区| 男人天堂欧美日韩| 欧美午夜一区二区| 黄色一区二区三区| 亚洲精品久久嫩草网站秘色| 99亚洲视频| 久久精品九九| 欧美日韩精品不卡| 国产一区二区三区奇米久涩| 亚洲电影天堂av| 亚洲一区二区在线免费观看视频| 久久久999精品| 欧美日韩在线视频首页| 国产一区二区精品丝袜| 亚洲狼人精品一区二区三区| 中文成人激情娱乐网| 久久狠狠一本精品综合网| 欧美91精品| 国产日韩一区二区三区| 亚洲日本欧美在线| 欧美一区2区三区4区公司二百| 美国三级日本三级久久99| 欧美午夜精品| 亚洲高清视频一区| 久久精品123| 欧美日韩视频免费播放| 狠狠色噜噜狠狠色综合久| 一本一道久久综合狠狠老精东影业| 性欧美1819sex性高清| 欧美福利网址| 国外视频精品毛片| 亚洲在线一区二区| 欧美日韩色综合| 日韩小视频在线观看| 久久精品国语| 国产日本欧美在线观看| 在线亚洲自拍| 欧美日本亚洲| 亚洲精品久久久蜜桃| 狼狼综合久久久久综合网| 国产午夜精品一区理论片飘花 | 欧美精彩视频一区二区三区| 国产在线精品一区二区中文| 亚洲一区999| 国产精品v亚洲精品v日韩精品| 亚洲国产午夜| 老司机免费视频一区二区| 韩国欧美一区| 久久综合国产精品| 亚洲福利久久| 久久综合国产精品台湾中文娱乐网| 国产午夜亚洲精品理论片色戒| 亚洲一级电影| 国产精品久久久久久久久婷婷| 日韩一级免费| 欧美日韩大片一区二区三区| 亚洲激情网址| 欧美色欧美亚洲另类七区| 一本大道久久a久久精品综合| 欧美日本韩国一区| 正在播放亚洲一区| 国产精品毛片a∨一区二区三区| 亚洲一区国产视频| 国产九九精品视频| 久久狠狠亚洲综合| **网站欧美大片在线观看| 欧美1区视频| 亚洲美女黄色片| 国产精品xvideos88| 亚洲免费一区二区| 国产亚洲精品自拍| 久久免费观看视频| 亚洲精品影视| 国产精品免费福利| 久久久久.com| 99精品热视频只有精品10| 国产麻豆日韩欧美久久| 欧美亚洲系列| 亚洲人成网在线播放| 欧美小视频在线|