異步電機(jī)無速度傳感器矢量控制技術(shù)提高了交流傳動系統(tǒng)的可靠性,降低了系統(tǒng)的實(shí)現(xiàn)成本。準(zhǔn)確辨識電機(jī)轉(zhuǎn)速是實(shí)現(xiàn)無速度傳感器矢量控制的關(guān)鍵。 本文對無速度傳感器矢量控制系統(tǒng)進(jìn)行了研究,建立了異步電動機(jī)無速度傳感器電壓解耦矢量控制系統(tǒng)和基于模型參考自適應(yīng)(MRAS)的無速度傳感器矢量控制系統(tǒng)。基于MRAS的無速度傳感器矢量控制系統(tǒng)利用電動機(jī)定子電壓方程和電流方程得到電動機(jī)轉(zhuǎn)速的模型參考自適應(yīng)辨識算法,在此基礎(chǔ)上建立了一個改進(jìn)的變參數(shù)MRAS速度辨識數(shù)學(xué)模型,并利用Matlab軟件對基于該速度辨識模型的無速度傳感器異步電動機(jī)矢量控制系統(tǒng)在不同的情況下進(jìn)行了詳細(xì)的仿真研究。仿真結(jié)果驗(yàn)證了該改進(jìn)的變參數(shù)MRAS速度辨識模型具有令人滿意的辨識精度和動態(tài)性能。 基于MRAS的轉(zhuǎn)速估算理論從本質(zhì)上來說屬于基于電機(jī)理想模型的轉(zhuǎn)速估算方案,該方法依賴于電機(jī)參數(shù),而電機(jī)參數(shù)在電機(jī)運(yùn)動過程中變化很大,因而給出了對電機(jī)的一些定、轉(zhuǎn)子參數(shù)進(jìn)行實(shí)時(shí)辨識方法,以保持系統(tǒng)的動、靜態(tài)性能。 在傳統(tǒng)型模型參考自適應(yīng)系統(tǒng)基礎(chǔ)上,將系統(tǒng)中原有的自適應(yīng)調(diào)節(jié)機(jī)構(gòu)用一個具有在線學(xué)習(xí)能力的人工神經(jīng)網(wǎng)絡(luò)取代,提出一種基于神經(jīng)網(wǎng)絡(luò)的異步電機(jī)轉(zhuǎn)速估計(jì)方法,并給出了速度估計(jì)器的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和學(xué)習(xí)算法。最后對基于神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)速估計(jì)的異步電機(jī)矢量控制系統(tǒng)進(jìn)行了仿真,結(jié)果表明該系統(tǒng)具有良好的性能。 簡單介紹了基于DSP的異步電機(jī)無速度傳感器矢量控制系統(tǒng)的硬件結(jié)構(gòu)以及軟件系統(tǒng)的設(shè)計(jì)。
上傳時(shí)間: 2013-05-30
上傳用戶:hakim
永磁同步電機(jī)(PMSM)因其無需勵磁電流、運(yùn)行效率和功率密度高,在交流調(diào)速系統(tǒng)中被廣泛的應(yīng)用,但PMSM高性能的矢量控制需要精確的轉(zhuǎn)子位置和速度信號來實(shí)現(xiàn)磁場定向。在傳統(tǒng)控制中,一般采用機(jī)械式傳感器來檢測轉(zhuǎn)子位置和轉(zhuǎn)速,但是機(jī)械式傳感器存在諸如成本高、可靠性低、不易維護(hù)等問題,使得無速度/位置傳感器控制技術(shù)成為永磁同步電機(jī)控制中的熱點(diǎn)問題。雖然目前已有較多的研究成果,但是所采用的方法大多是基于電機(jī)基波方程的分析,一般不適用于低速甚至零速,并且對電機(jī)參數(shù)較為敏感,魯棒性差。本文正是為了解決這個問題,而采用高頻信號注入法實(shí)現(xiàn)轉(zhuǎn)子位置估算,這種方法適合于低速甚至零速,對電機(jī)參數(shù)的變化不敏感,魯棒性強(qiáng)。主要做了如下的工作: 首先詳細(xì)介紹了永磁同步電機(jī)三種基本結(jié)構(gòu),在建立了旋轉(zhuǎn)坐標(biāo)系下永磁同步電機(jī)數(shù)學(xué)模型的基礎(chǔ)上敘述了其矢量控制原理,分析了各種現(xiàn)有的永磁同步電機(jī)無速度/位置傳感器控制策略;其次在永磁同步電機(jī)矢量控制的基礎(chǔ)上詳細(xì)討論了旋轉(zhuǎn)高頻電壓信號注入法與脈振高頻電壓信號注入法提取轉(zhuǎn)子位置的基本原理,并在此基礎(chǔ)上利用MATLAB/SIMULINK仿真工具建立了整個永磁同步電機(jī)無速度/位置傳感器矢量控制系統(tǒng)的模型,進(jìn)行了仿真研究,仿真結(jié)果驗(yàn)證了控制算法的正確性。最后利用TI公司推出的數(shù)字信號處理器DSP芯片TMS320F2812,實(shí)現(xiàn)了基于脈振高頻信號注入法的永磁同步電機(jī)無速度/位置傳感器的實(shí)驗(yàn)運(yùn)行,實(shí)驗(yàn)結(jié)果驗(yàn)證了這種方法適合于低速運(yùn)行,對電機(jī)參數(shù)的變化不敏感,魯棒性強(qiáng)。
標(biāo)簽: 高頻信號 永磁同步電機(jī) 無傳感器
上傳時(shí)間: 2013-06-06
上傳用戶:Neal917
在機(jī)器人學(xué)的研究領(lǐng)域中,如何有效地提高機(jī)器人控制系統(tǒng)的控制性能始終是研究學(xué)者十分關(guān)注的一個重要內(nèi)容。在分析了工業(yè)機(jī)器人的發(fā)展歷程和機(jī)器人控制系統(tǒng)的研究現(xiàn)狀后,本論文的主要目標(biāo)是針對四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人特有的機(jī)械結(jié)構(gòu)和數(shù)學(xué)模型,建立一個新型全數(shù)字的基于DSP和FPGA的機(jī)器人位置伺服控制系統(tǒng)的軟、硬件平臺,實(shí)現(xiàn)對四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人的精確控制。 本論文從實(shí)際情況出發(fā),首先分析了所研究的四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人的本體結(jié)構(gòu),并對其抽象簡化得到了它的運(yùn)動學(xué)數(shù)學(xué)模型。在明確了實(shí)現(xiàn)機(jī)器人精確位置伺服控制的控制原理后,我們對機(jī)器人控制系統(tǒng)的諸多可行性方案進(jìn)行了充分論證,并最終決定采用了三級CPU控制的控制體系結(jié)構(gòu):第一級CPU為上位計(jì)算機(jī),它實(shí)現(xiàn)對機(jī)器人的系統(tǒng)管理、協(xié)調(diào)控制以及完成機(jī)器人實(shí)時(shí)軌跡規(guī)劃等控制算法的運(yùn)算;第二級CPU為高性能的DSP處理器,它輔之以具有高速并行處理能力的FPGA芯片,實(shí)現(xiàn)了對機(jī)器人多個關(guān)節(jié)的高速并行驅(qū)動;第三級CPU為交流伺服驅(qū)動處理器,它實(shí)現(xiàn)了機(jī)器人關(guān)節(jié)伺服電機(jī)的精確三閉環(huán)誤差驅(qū)動控制,以及電機(jī)的故障診斷和自動保護(hù)等功能。此外,我們采用比普通UART速度快得多的USB來實(shí)現(xiàn)上位計(jì)算機(jī).與下位控制器之間的數(shù)據(jù)通信,這樣既保證了兩者之間連接方便,又有效的提高了控制系統(tǒng)的通信速度和可靠性。 機(jī)器人系統(tǒng)的軟件設(shè)計(jì)包括兩個部分:一是采用VC++實(shí)現(xiàn)的上位監(jiān)控軟件系統(tǒng),它主要負(fù)責(zé)機(jī)器人實(shí)時(shí)軌跡規(guī)劃等控制算法的運(yùn)算,同時(shí)完成用戶與機(jī)器人系統(tǒng)之間的信息交互;二是采用C語言實(shí)現(xiàn)的下位DSP控制程序,它主要負(fù)責(zé)接收上位監(jiān)控系統(tǒng)或者下位控制箱發(fā)送的控制信號,實(shí)現(xiàn)對機(jī)器人的實(shí)時(shí)驅(qū)動,同時(shí)還能夠?qū)崟r(shí)的向上位監(jiān)控系統(tǒng)或者下位控制箱反饋機(jī)器人的當(dāng)前狀態(tài)信息。 研究開發(fā)出來的四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人控制器具有控制實(shí)時(shí)性好、定位精度高、運(yùn)行穩(wěn)定可靠的特點(diǎn),它允許用戶通過上位控制計(jì)算機(jī)實(shí)現(xiàn)對機(jī)器人的各種設(shè)定作業(yè)的控制,也可以讓用戶通過機(jī)器人控制箱現(xiàn)場對機(jī)器人進(jìn)行回零、示教等各項(xiàng)操作。
標(biāo)簽: FPGA DSP 實(shí)驗(yàn)室 機(jī)器人控制器
上傳時(shí)間: 2013-06-11
上傳用戶:edisonfather
本論文圍繞大容量汽輪發(fā)電機(jī)的進(jìn)相運(yùn)行展開了研究工作。全文共分七章。第一章首先闡述了發(fā)電機(jī)進(jìn)相運(yùn)行的重要性和迫切性,對國內(nèi)外相關(guān)方面的研究概況作了較為系統(tǒng)全面的綜述,并對本論文的研究內(nèi)容作了簡單介紹。第二章給出了低頻三維渦流電磁場的復(fù)邊值問題,并介紹了復(fù)矢量場的一些理論基礎(chǔ)。然后分別利用伴隨算子和伴隨場函數(shù)(廣義相互作用原理)、最小作用原理和拉格朗日乘子法(廣義變分原理),建立了低頻三維渦流電磁場中非自伴算子問題的變分描述。上述三種方法所得的結(jié)果與Galerkin法的結(jié)果完全一致。第三章介紹了圓柱坐標(biāo)系下基于拱形體單元的三維穩(wěn)態(tài)溫度場有限元計(jì)算模型,并將變分法的結(jié)果與Galerkin法的結(jié)果進(jìn)行了對比。第四章建立了汽輪發(fā)電機(jī)端部三維行波渦流電磁場的數(shù)學(xué)模型,在渦流控制方程中引入了罰函數(shù)項(xiàng)以使庫倫規(guī)范自動滿足,并應(yīng)用廣義相互作用原理導(dǎo)出了對應(yīng)的泛函變分及其有限元計(jì)算格式。然后對多臺大容量汽輪發(fā)電機(jī)端部的渦流電磁場進(jìn)行了實(shí)例計(jì)算,并分析了罰函數(shù)項(xiàng)對數(shù)值解穩(wěn)定性的影響以及影響端部電磁場的各種因素。第五章建立了大型汽輪發(fā)電機(jī)端部三維溫度場的有限元計(jì)算模型,并應(yīng)用傳熱學(xué)理論研究了散熱系數(shù)、等效熱傳導(dǎo)系數(shù)等問題。然后求解了QFSS-300-2型汽輪發(fā)電機(jī)端部大壓圈上的三維溫度場分布,并與兩臺機(jī)組多種工況下的實(shí)測數(shù)據(jù)進(jìn)行了對比。第六章介紹了二維穩(wěn)態(tài)溫度場的邊值問題及其等價(jià)變分,導(dǎo)出了其有限元計(jì)算格式。然后求解了QFQS-200-2型汽輪發(fā)電機(jī)端部壓圈上的溫度分布,并與實(shí)測數(shù)據(jù)進(jìn)行了對比。第七章首先定性研究了汽輪發(fā)電機(jī)從遲相運(yùn)行到進(jìn)相運(yùn)行過程中不同區(qū)域上磁場強(qiáng)度的變化規(guī)律。然后介紹了發(fā)電機(jī)變參數(shù)數(shù)學(xué)模型,結(jié)合實(shí)測數(shù)據(jù)以及最小二乘回歸分析計(jì)算了發(fā)電機(jī)穩(wěn)態(tài)運(yùn)行時(shí)的相關(guān)電氣參數(shù),并分析了發(fā)電機(jī)各物理量之間的相互關(guān)系。隨后分析了不同工況下發(fā)電機(jī)端部結(jié)構(gòu)件上的渦流損耗及溫升的變化趨勢。最后,利用發(fā)電機(jī)變參數(shù)模型給出了發(fā)電機(jī)的飽和功角特性、靜穩(wěn)極限以及運(yùn)行極限圖。
標(biāo)簽: 大型 分 汽輪發(fā)電機(jī) 物理
上傳時(shí)間: 2013-07-10
上傳用戶:stampede
該文研究了兩相逆變器-異步電動機(jī)系統(tǒng)的SVPWM控制技術(shù),該系統(tǒng)可以廣泛應(yīng)用于小功率、寬調(diào)速運(yùn)行的場合.通過對電機(jī)基本方程進(jìn)行Kron變換,建立了系統(tǒng)完整的數(shù)學(xué)模型.論文在分析國內(nèi)外兩相逆變器異步電動機(jī)的SVPWM控制基礎(chǔ)上,提出四個電壓矢量八個工作空間的SVPWM控制技術(shù),推導(dǎo)了控制參數(shù)和計(jì)算公式,提出了使電機(jī)具有圓形旋轉(zhuǎn)磁場的調(diào)制比優(yōu)化方案,給出了實(shí)施該方案的逆變器功率管的導(dǎo)通順序和逆變器的輸出電壓波形.編制了系統(tǒng)仿真程序,給出SVPWM控制,兩相逆變器-異步電動機(jī)系統(tǒng)樣機(jī)的電壓、電流、轉(zhuǎn)速、轉(zhuǎn)矩仿真波形曲.并與采用其他控制方式,進(jìn)行仿真結(jié)果比較.論證了該文提出的SVPWM控制技術(shù)在兩相逆變器-異步電動機(jī)系統(tǒng)中明顯地減小了電流諧波、轉(zhuǎn)矩脈動.論文建立了基于DSP控制器的兩相逆變器-異步電動機(jī)系統(tǒng)試驗(yàn)裝置系統(tǒng),系統(tǒng)由DSP控制器、控制電路、功率驅(qū)動電路、逆變器主電路、異步電動機(jī)等組成.完成了各工作區(qū)的SVPWM信號的生成,與理論實(shí)現(xiàn)一致.
標(biāo)簽: SVPWM DSP 異步電動機(jī) 控制
上傳時(shí)間: 2013-07-27
上傳用戶:tb_6877751
激光測距是激光技術(shù)在軍事上最早和最成熟的應(yīng)用,自1961.年美國休斯飛機(jī)公司研制成功世界上第一臺激光測距機(jī)之后,激光測距技術(shù)發(fā)展迅速。如今,它已經(jīng)被廣泛運(yùn)用于軍用領(lǐng)域和民用領(lǐng)域。為了進(jìn)一步提高我國激光測距水平,研制更高性能激光測距機(jī)依然是我國國防科技研究中的重要課題之一。其中,測距精度是激光測距機(jī)的一個重要參數(shù)。而激光測距機(jī)能否準(zhǔn)確的檢測激光回波信號將直接影響測距精度。 脈沖激光測距系統(tǒng)主要包括激光發(fā)射子系統(tǒng)、激光回波探測子系統(tǒng)、回波檢測與主控子系統(tǒng)、終端顯示子系統(tǒng)等組成。其中設(shè)計(jì)高精度激光回波檢測與主控子系統(tǒng)是實(shí)現(xiàn)高精度激光測距的核心問題。傳統(tǒng)激光回波檢測與主控子系統(tǒng)通常采用分立元件和小規(guī)模集成電路設(shè)計(jì),電路復(fù)雜且精度較低。隨著數(shù)字電路設(shè)計(jì)技術(shù)的發(fā)展,已出現(xiàn)大規(guī)模可編程邏輯器件FPGA(現(xiàn)場可編程門陣列)和CPLD(復(fù)雜可編程邏輯器件)。采用FPGA代替?zhèn)鹘y(tǒng)的分立元件和小規(guī)模集成電路來設(shè)計(jì)激光回波檢測與主控子系統(tǒng),不僅提高了回波檢測精度,同時(shí)簡化了整個測距系統(tǒng)的設(shè)計(jì)。 本文研究了將激光回波信號直接送入FPGA進(jìn)行檢測的方案。同時(shí),采用這種方案設(shè)計(jì)了一種激光回波檢測系統(tǒng),并把它成功運(yùn)用在一引信項(xiàng)目中。這種方案電路設(shè)計(jì)簡單,易于實(shí)現(xiàn)。在實(shí)際應(yīng)用中,由于激光回波探測子系統(tǒng)只是完成由光信號到電信號的轉(zhuǎn)換及簡單放大,理論分析和試驗(yàn)結(jié)果均表明,采用該方案進(jìn)行回波檢測的精度較低,這種回波檢測方法也只能應(yīng)用在測距精度要求低的項(xiàng)目中。 為了滿足另一高精度測距項(xiàng)目的需要,在FPGA直接進(jìn)行激光回波檢測方案的基礎(chǔ)上,設(shè)計(jì)了一種高精度激光回波檢測系統(tǒng)。文中介紹了其實(shí)現(xiàn)原理,理論上分析了該系統(tǒng)所能達(dá)到的回波檢測精度及整機(jī)測距系統(tǒng)的測距精度。與第一種方案相比,該方案引入了超高速數(shù)據(jù)采集電路。由于采樣速率高達(dá)lGsps,該方案實(shí)現(xiàn)的難點(diǎn)在于如何保證數(shù)據(jù)采集電路的穩(wěn)定工作。文中從總體方案的設(shè)計(jì),到器件的選型,硬件電路板的實(shí)現(xiàn)等方面做了詳細(xì)的闡述,最終完成了系統(tǒng)硬件電路設(shè)計(jì)。接著介紹了系統(tǒng)程序設(shè)計(jì)。后面給出了試驗(yàn)測試結(jié)果,該系統(tǒng)工作穩(wěn)定,性能良好。系統(tǒng)設(shè)計(jì)中引入的超高速數(shù)據(jù)采集電路有著廣泛的應(yīng)用,為其他相關(guān)設(shè)計(jì)提供了參考。最后,對全文做了工作總結(jié),并給出了接下來的后續(xù)工作與展望。 本文在高速FPGA對激光回波信號檢測方向取得了一定的成果,為進(jìn)一步研究提供了參考價(jià)值。
標(biāo)簽: FPGA 激光 回波 中的應(yīng)用
上傳時(shí)間: 2013-06-13
上傳用戶:cy1109
在機(jī)器人學(xué)的研究領(lǐng)域中,如何有效地提高機(jī)器人控制系統(tǒng)的控制性能始終是研究學(xué)者十分關(guān)注的一個重要內(nèi)容。在分析了工業(yè)機(jī)器人的發(fā)展歷程和機(jī)器人控制系統(tǒng)的研究現(xiàn)狀后,本論文的主要目標(biāo)是針對四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人特有的機(jī)械結(jié)構(gòu)和數(shù)學(xué)模型,建立一個新型全數(shù)字的基于DSP和FPGA的機(jī)器人位置伺服控制系統(tǒng)的軟、硬件平臺,實(shí)現(xiàn)對四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人的精確控制。 本論文從實(shí)際情況出發(fā),首先分析了所研究的四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人的本體結(jié)構(gòu),并對其抽象簡化得到了它的運(yùn)動學(xué)數(shù)學(xué)模型。在明確了實(shí)現(xiàn)機(jī)器人精確位置伺服控制的控制原理后,我們對機(jī)器人控制系統(tǒng)的諸多可行性方案進(jìn)行了充分論證,并最終決定采用了三級CPU控制的控制體系結(jié)構(gòu):第一級CPU為上位計(jì)算機(jī),它實(shí)現(xiàn)對機(jī)器人的系統(tǒng)管理、協(xié)調(diào)控制以及完成機(jī)器人實(shí)時(shí)軌跡規(guī)劃等控制算法的運(yùn)算;第二級CPU為高性能的DSP處理器,它輔之以具有高速并行處理能力的FPGA芯片,實(shí)現(xiàn)了對機(jī)器人多個關(guān)節(jié)的高速并行驅(qū)動;第三級CPU為交流伺服驅(qū)動處理器,它實(shí)現(xiàn)了機(jī)器人關(guān)節(jié)伺服電機(jī)的精確三閉環(huán)誤差驅(qū)動控制,以及電機(jī)的故障診斷和自動保護(hù)等功能。此外,我們采用比普通UART速度快得多的USB來實(shí)現(xiàn)上位計(jì)算機(jī).與下位控制器之間的數(shù)據(jù)通信,這樣既保證了兩者之間連接方便,又有效的提高了控制系統(tǒng)的通信速度和可靠性。 機(jī)器人系統(tǒng)的軟件設(shè)計(jì)包括兩個部分:一是采用VC++實(shí)現(xiàn)的上位監(jiān)控軟件系統(tǒng),它主要負(fù)責(zé)機(jī)器人實(shí)時(shí)軌跡規(guī)劃等控制算法的運(yùn)算,同時(shí)完成用戶與機(jī)器人系統(tǒng)之間的信息交互;二是采用C語言實(shí)現(xiàn)的下位DSP控制程序,它主要負(fù)責(zé)接收上位監(jiān)控系統(tǒng)或者下位控制箱發(fā)送的控制信號,實(shí)現(xiàn)對機(jī)器人的實(shí)時(shí)驅(qū)動,同時(shí)還能夠?qū)崟r(shí)的向上位監(jiān)控系統(tǒng)或者下位控制箱反饋機(jī)器人的當(dāng)前狀態(tài)信息。 研究開發(fā)出來的四關(guān)節(jié)實(shí)驗(yàn)室機(jī)器人控制器具有控制實(shí)時(shí)性好、定位精度高、運(yùn)行穩(wěn)定可靠的特點(diǎn),它允許用戶通過上位控制計(jì)算機(jī)實(shí)現(xiàn)對機(jī)器人的各種設(shè)定作業(yè)的控制,也可以讓用戶通過機(jī)器人控制箱現(xiàn)場對機(jī)器人進(jìn)行回零、示教等各項(xiàng)操作。
標(biāo)簽: 實(shí)驗(yàn)室 機(jī)器人控制器
上傳時(shí)間: 2013-04-24
上傳用戶:極客
現(xiàn)代IC設(shè)計(jì)中,隨著設(shè)計(jì)規(guī)模的擴(kuò)大和復(fù)雜度的增長,驗(yàn)證成為最嚴(yán)峻的挑戰(zhàn)之一。在現(xiàn)代ASIC設(shè)計(jì)中,很難用單一的驗(yàn)證方法來對復(fù)雜芯片進(jìn)行有效的驗(yàn)證,為了將設(shè)計(jì)錯誤減少到可接受的最小量,需要將一系列的驗(yàn)證方法和工具結(jié)合起來。 在64位全定制嵌入式CPU設(shè)計(jì)過程中,使用了多種驗(yàn)證技術(shù)和方法,并將FPGA驗(yàn)證作為ASIC驗(yàn)證的重要補(bǔ)充,加強(qiáng)了設(shè)計(jì)正確的可靠性。 論文首先介紹了64位CPU的結(jié)構(gòu),結(jié)合選用的Xilinx的Virtex
上傳時(shí)間: 2013-04-24
上傳用戶:003030
近年來,在鋼鐵材質(zhì)質(zhì)量檢測的研究領(lǐng)域,電磁無損檢測方法以其非破壞性和簡便快速的優(yōu)點(diǎn)取得了大量成果,然而對于鋼材及其制品的混料、硬度和裂紋質(zhì)量檢測還存在許多難題.如用傳統(tǒng)檢測平臺檢測鋼鐵件硬度的檢測精度和速度都不夠理想。 基于上述情況,論文將先進(jìn)的SOPC技術(shù)應(yīng)用到鋼鐵件的電磁無損檢測中。SOPC技術(shù)將處理器、存儲器、IO接口、各種外圍設(shè)備等系統(tǒng)設(shè)計(jì)需要的部件集成到一個可編程邏輯器件上,構(gòu)建成一個可編程的片上系統(tǒng)。 論文詳細(xì)論述了基于FPGA的電磁無損檢測試驗(yàn)裝置的理論基礎(chǔ),并在此基礎(chǔ)上給出了總體設(shè)計(jì)方案。全文著重?cái)⑹隽讼到y(tǒng)的模擬部分,系統(tǒng)配置以及軟件部分的整個設(shè)計(jì)過程。利用QuartusⅡ自定義外設(shè)和Avalon總線多主并行處理的特點(diǎn),采用Vefilog HDL,語言實(shí)現(xiàn)激勵信號發(fā)生器和高速數(shù)據(jù)采集器,使得信號激勵和信號采集在同一片芯片中實(shí)現(xiàn),從而提高了信號及信號處理的精確度。由于電磁檢測對多種參數(shù)的敏感反應(yīng),必須抑制由此引入的多種因素的干擾,利用FIR數(shù)字濾波和相關(guān)方法從眾多的干擾信號中提取出有效信號的幅度和相位,同時(shí)利用NiosⅡC2H功能對濾波模塊進(jìn)行硬件加速處理,大大提高了信號處理的速度。利用最小二乘法建立回歸方程模型進(jìn)行無損檢測。最后運(yùn)用此電磁無損檢測系統(tǒng)對軸承鋼的硬度進(jìn)行了定性測試,取得了較好的檢測結(jié)果。 試驗(yàn)結(jié)果表明,將SOPC技術(shù)應(yīng)用到電磁無損檢測系統(tǒng)中,系統(tǒng)的檢測速度和檢測精度都有所提高,并使得整個系統(tǒng)在規(guī)模、可靠性、性能指標(biāo)、開發(fā)成本、產(chǎn)品維護(hù)及硬件升級等多方面實(shí)現(xiàn)了優(yōu)化。
上傳時(shí)間: 2013-06-04
上傳用戶:13081287919
渦流無損檢測技術(shù)作為五大常規(guī)無損檢測技術(shù)之一,不僅能夠探測導(dǎo)體表面的涂層厚度,材料成分,組織狀態(tài)以及某些物理量和機(jī)械量,還能檢測材料或構(gòu)件中是否有缺陷并判斷缺陷的形狀、大小、分布、走向。脈沖渦流無損檢測技術(shù)因其激勵信號的頻域特點(diǎn),具有有效率高,檢測準(zhǔn)確的特性,因而有著廣泛的應(yīng)用前景。 用無損檢測方法進(jìn)行鋼鐵材質(zhì)檢測的研究工作取得了大量成果,然而對于鋼材及其制品的混料、硬度和裂紋質(zhì)量檢測還存在許多難題,如用傳統(tǒng)檢測方法檢測齒輪毛坯的硬度效果不夠理想,而且人工記錄方法較慢。 本文以渦流檢測技術(shù)理論為基礎(chǔ),系統(tǒng)地分析了脈沖渦流檢測的基本理論。在此基礎(chǔ)上設(shè)計(jì)了一套用于檢測鋼鐵材硬度的脈沖渦流檢測儀器。該脈沖渦流檢測系統(tǒng)可分為硬件、軟件兩個子系統(tǒng)。整個系統(tǒng)由激勵源、渦流傳感器、數(shù)據(jù)處理、結(jié)果顯示這四個主要部分組成。在渦流探傷中,影響渦流的因素很多,產(chǎn)生大量噪聲使得信號分析相對困難。系統(tǒng)以FPGA為開發(fā)平臺,使得信號激勵和信號的采集可以在同一電路中實(shí)現(xiàn),從而提高了信號處理的精確性,接著利用主成分分析方法去除噪音,提取信號的特征值,建立回歸方程,利用最小二乘法實(shí)現(xiàn)對鋼鐵材質(zhì)硬度的測量。實(shí)驗(yàn)結(jié)果表明,以FPGA為開發(fā)平臺,采用脈沖渦流激勵的方式及相關(guān)的脈沖渦流的主成分分析處理方法,使鋼鐵材質(zhì)硬度的判別準(zhǔn)確率有了很大提高。
上傳時(shí)間: 2013-04-24
上傳用戶:327000306
蟲蟲下載站版權(quán)所有 京ICP備2021023401號-1