隔離升壓DC-DC變換器在電動(dòng)汽車、儲(chǔ)能系統(tǒng)、可再生能源發(fā)電以及超導(dǎo)儲(chǔ)能系統(tǒng)等領(lǐng)域有廣闊的應(yīng)用前景。本文以隔離升壓全橋變換器(Isolated Boost Full Bridge Converter,簡(jiǎn)稱IBFBC)為研究對(duì)象,針對(duì)隔離升壓型變換器的拓?fù)浣Y(jié)構(gòu)、起動(dòng)問(wèn)題、隔離變壓器漏感問(wèn)題、軟開(kāi)關(guān)問(wèn)題和輸入電感磁復(fù)位問(wèn)題等進(jìn)行了系統(tǒng)深入的研究,解決了這一類拓?fù)渌灿屑夹g(shù)問(wèn)題。 提出了隔離升壓DC-DC變換器拓?fù)渥澹治霰容^了各種拓?fù)涞奶攸c(diǎn),確定了以IBFBC為研究對(duì)象。對(duì)IBFBC進(jìn)行了詳細(xì)的穩(wěn)態(tài)分析和小信號(hào)建模分析,為其分析、設(shè)計(jì)和搭建實(shí)驗(yàn)平臺(tái)提供了電路理論基礎(chǔ)。 理論上分析了IBFBC起動(dòng)時(shí)存在電流沖擊的原因。提出了二種數(shù)字化軟起動(dòng)方案,該方案對(duì)主電路進(jìn)行了改造,利用DSP能靈活產(chǎn)生PWM波的特點(diǎn)采用了新的控制策略,成功實(shí)現(xiàn)了該系統(tǒng)的軟起動(dòng)。 理論上分析了IBFBC隔離變壓器漏感引起功率開(kāi)關(guān)管關(guān)斷電壓尖峰的原因,采用了有源箝位的方法,有效的解決電壓尖峰問(wèn)題。提出了帶有源箝位IBFBC的九種PWM控制策略,提出了一種控制型軟PWM方法,在不增加主電路元器件的基礎(chǔ)上,通過(guò)控制PWM的發(fā)生方法,實(shí)現(xiàn)了有源箝位功率開(kāi)關(guān)管和橋臂功率開(kāi)關(guān)管的零電壓開(kāi)通。 從理論上分析了IBFBC輸入電感磁復(fù)位問(wèn)題。在正常停機(jī)時(shí)提出了一種數(shù)字化軟停止的方法,控制變換器由Boost工作狀態(tài)逐漸過(guò)渡到Buck工作狀態(tài),讓輸入電感存儲(chǔ)的能量逐漸釋放掉,最后停止工作。對(duì)于故障保護(hù)停機(jī),采用了繞組磁復(fù)位的方法,把輸入電感設(shè)計(jì)成反激式變換器形式,突然停機(jī)時(shí),電感中存儲(chǔ)的能量通過(guò)反激式繞組釋放到輸出端,這樣保護(hù)了變換器不會(huì)損壞。 給出了主電路關(guān)鍵器件參數(shù)的設(shè)計(jì)方法,設(shè)計(jì)了以DSP-TMS320F2407為核心的數(shù)字控制單元,編寫(xiě)了DSP控制程序和CPLD邏輯處理程序。研制了一臺(tái)輸出功率5KW,輸入電壓直流24V,輸出電壓直流300V的IBFBC,通過(guò)全面的性能實(shí)驗(yàn)驗(yàn)證了理論分析和仿真結(jié)果。 本文立足于IBFBC的關(guān)鍵技術(shù)要求,并充分考慮工程應(yīng)用中的實(shí)際因素,進(jìn)行了理論分析和實(shí)驗(yàn)研究,為實(shí)際系統(tǒng)方案設(shè)計(jì)提供理論依據(jù),并已經(jīng)在實(shí)際應(yīng)用中得到驗(yàn)證。
上傳時(shí)間: 2013-04-24
上傳用戶:lifevast
本文首先簡(jiǎn)述了交流調(diào)速系統(tǒng)的發(fā)展和研究重點(diǎn),介紹了異步電機(jī)調(diào)速系統(tǒng)的不同控制策略,詳細(xì)論述了異步電機(jī)矢量控制系統(tǒng)的基本原理:異步電機(jī)的數(shù)學(xué)模型和坐標(biāo)變換、矢量控制的基本方程式、轉(zhuǎn)子磁鏈的觀測(cè)方法、矢量控制的系統(tǒng)結(jié)構(gòu)等,并重點(diǎn)分析了空間矢量脈寬調(diào)制(SVPWM)技術(shù)的基本原理、控制算法以及在TMS320LF2407中的實(shí)現(xiàn)方法。 從工程實(shí)際應(yīng)用出發(fā),本文設(shè)計(jì)和開(kāi)發(fā)了一套以DSP芯片TMS320LF2407為核心的有速度傳感器異步電機(jī)矢量控制系統(tǒng),并給出了硬件和軟件的實(shí)現(xiàn)方法。該系統(tǒng)的功率電路采用電壓型的交-直-交變壓變頻結(jié)構(gòu),由整流電路、濾波電路及智能功率模塊IPM(PM15RSH120)逆變電路構(gòu)成;控制電路以DSP芯片TMS320LF2407為核心,加上PWM信號(hào)發(fā)生電路、定子電流檢測(cè)電路、直流母線電壓檢測(cè)電路、智能功率模塊驅(qū)動(dòng)電路、速度檢測(cè)電路、系統(tǒng)保護(hù)電路等,構(gòu)成了功能齊全的異步電機(jī)全數(shù)字化矢量控制系統(tǒng)。 在此基礎(chǔ)上,本文對(duì)無(wú)速度傳感器異步電機(jī)矢量控制系統(tǒng)進(jìn)行了有益的探索。提出了改進(jìn)的電壓型轉(zhuǎn)子磁鏈估算模型,消除了電壓型轉(zhuǎn)子磁鏈估算模型中純積分環(huán)節(jié)所固有的漂移問(wèn)題和積累誤差對(duì)實(shí)際系統(tǒng)性能的影響。在傳統(tǒng)型參考自適應(yīng)系統(tǒng)基礎(chǔ)上,將系統(tǒng)中原有的自適應(yīng)調(diào)節(jié)機(jī)構(gòu)用一個(gè)具有在線學(xué)習(xí)能力的模糊神經(jīng)網(wǎng)絡(luò)取代,提出一種基于模糊神經(jīng)網(wǎng)絡(luò)的異步電機(jī)轉(zhuǎn)速估計(jì)方法,并給出了速度估計(jì)器的模糊神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和學(xué)習(xí)算法。最后對(duì)基于模糊神經(jīng)網(wǎng)絡(luò)轉(zhuǎn)速估計(jì)的異步電機(jī)矢量控制系統(tǒng)進(jìn)行了仿真,結(jié)果表明該系統(tǒng)具有良好的性能。
標(biāo)簽: 模糊神經(jīng)網(wǎng)絡(luò) 異步電機(jī) 轉(zhuǎn)速
上傳時(shí)間: 2013-07-02
上傳用戶:amandacool
矢量控制作為一種先進(jìn)的控制策略,是在電機(jī)統(tǒng)一理論、機(jī)電能量轉(zhuǎn)換和坐標(biāo)變換理論的基礎(chǔ)上發(fā)展起來(lái)的,具有先進(jìn)性、新穎性和實(shí)用性的特點(diǎn)。它是以交流電動(dòng)機(jī)的雙軸理論為依據(jù),將定子電流矢量分解為按轉(zhuǎn)子磁場(chǎng)定向的兩個(gè)直流分量:一個(gè)分量與轉(zhuǎn)子磁鏈?zhǔn)噶恐睾希Q為勵(lì)磁電流分量;另一個(gè)分量與轉(zhuǎn)子磁鏈?zhǔn)噶看怪保Q為轉(zhuǎn)矩電流分量。通過(guò)控制定子電流矢量在旋轉(zhuǎn)坐標(biāo)系的位置及大小,即可控制勵(lì)磁電流分量和轉(zhuǎn)矩電流分量的大小,實(shí)現(xiàn)像直流電動(dòng)機(jī)那樣對(duì)磁場(chǎng)和轉(zhuǎn)矩的解耦控制。本文研究的是以TMS320LF2407ADSP和FPGA為控制核心的矢量控制變頻調(diào)速系統(tǒng)。 分析了脈寬調(diào)制和矢量控制的原理與實(shí)現(xiàn)方法,從而建立了異步電動(dòng)機(jī)的數(shù)學(xué)模型。對(duì)于矢量控制,分析了矢量控制的基本原理和控制算法,推導(dǎo)了三相坐標(biāo)系、兩相靜止與旋轉(zhuǎn)坐標(biāo)系下的電機(jī)基本方程和矢量控制基本公式。同時(shí)在進(jìn)行相應(yīng)的坐標(biāo)變換以后,得到了間接磁場(chǎng)定向型變頻調(diào)速系統(tǒng)的矢量控制圖,并結(jié)合TMS320LF2407ADSP完成了具體的實(shí)現(xiàn)方法,根據(jù)矢量控制的基本原理,設(shè)計(jì)了一種基于DSP和FPGA的SVPWM冗余系統(tǒng)。 在硬件方面,以TMS320LF2407ADSP和EP1C12Q240FPGA為控制器,兩者之間通過(guò)雙口RAMIDT7130完成數(shù)據(jù)的交換,并能在一方失控時(shí)另一方立即產(chǎn)生SVPWM波形。同時(shí)完成無(wú)線遙控、速度給定、數(shù)據(jù)顯示以及電流、速度檢測(cè)和保護(hù)等功能,也對(duì)變頻調(diào)速系統(tǒng)的主電路、電源電路、FPGA配置電路、無(wú)線遙控電路、LCD顯示電路、保護(hù)電路、電流和轉(zhuǎn)速檢測(cè)電路作了簡(jiǎn)單的介紹。在軟件方面,給出了基于DSP的矢量控制系統(tǒng)軟件流程圖,并用C語(yǔ)言進(jìn)行了編程。用硬件描述語(yǔ)言Verilog對(duì)FPGA進(jìn)行了編程,并給出了相關(guān)的仿真波形。MATLAB仿真結(jié)果表明,本文研究的調(diào)速系統(tǒng)的矢量控制算法是成功的,并實(shí)現(xiàn)了對(duì)電機(jī)的高性能控制。
上傳時(shí)間: 2013-07-09
上傳用戶:jogger_ding
電子式互感器與傳統(tǒng)電磁式互感器相比,在帶寬、絕緣和成本等方面具有優(yōu)勢(shì),因而代表了高電壓等級(jí)電力系統(tǒng)中電流和電壓測(cè)量的一種極具吸引力的發(fā)展方向。隨著信息技術(shù)的發(fā)展和電力市場(chǎng)中競(jìng)爭(zhēng)機(jī)制的形成,電子式互感器成為人們研究的熱點(diǎn);越來(lái)越多的新技術(shù)被引入到電子式互感器設(shè)計(jì)中,以提高其工作可靠性,降低運(yùn)行總成本,減小對(duì)生態(tài)環(huán)境的壓力。本文圍繞電子式互感器實(shí)用化中的關(guān)鍵技術(shù)而展開(kāi)理論與實(shí)驗(yàn)研究,具體包括新型傳感器、雙傳感器的數(shù)據(jù)融合算法、數(shù)字接口、組合式電源、低功耗技術(shù)和自監(jiān)測(cè)功能的實(shí)現(xiàn)等。 目前電子式電流互感器(ECT)大多數(shù)采用單傳感器開(kāi)環(huán)結(jié)構(gòu),對(duì)每個(gè)環(huán)節(jié)的精度和可靠性的要求都很高,嚴(yán)重制約了ECT整體性能的提高,影響其實(shí)用化。本文介紹了新型傳感器~鐵心線圈式低功率電流傳感器(LPET)和印刷電路板(PCB)空心線圈及其數(shù)字積分器,在此基礎(chǔ)上設(shè)計(jì)了一種基于LPCT和PCB空心線圈的組合結(jié)構(gòu)的新型電流傳感器。該結(jié)構(gòu)具有并聯(lián)的特點(diǎn),結(jié)合了這兩種互感器的優(yōu)點(diǎn),采用數(shù)據(jù)融合算法來(lái)處理兩路信號(hào),實(shí)現(xiàn)高精度測(cè)量和提高系統(tǒng)可靠性,并探索出辨別LPET飽和的新方法。試驗(yàn)和仿真結(jié)果表明,這種新型電流傳感器可以覆蓋較大的電流測(cè)量范圍,達(dá)到IEC 60044-8標(biāo)準(zhǔn)中關(guān)于測(cè)量(幅值誤差)、保護(hù)(復(fù)合誤差)和暫態(tài)響應(yīng)(峰值)的準(zhǔn)確度要求,能夠作為多用途電流傳感器使用。 在電子式電壓互感器方面,基于精密電阻分壓器的新型傳感器在原理、結(jié)構(gòu)和輸出信號(hào)等方面與傳統(tǒng)的電壓互感器有很大不同,本文設(shè)計(jì)了一種可替代10kV電磁式電壓互感器的精密電阻分壓器。通過(guò)試驗(yàn)研究與計(jì)算分析,得出其性能主要受電阻特性和雜散電容的影響,并給出了減小其誤差的方法。測(cè)試結(jié)果表明,設(shè)計(jì)的10kV精密電阻分壓器的準(zhǔn)確度滿足IEC 60044-7標(biāo)準(zhǔn)要求,可達(dá)0.2級(jí)。 電子式互感器的關(guān)鍵技術(shù)之一是內(nèi)部的數(shù)字化以及其標(biāo)準(zhǔn)化接口,本文以10kV組合型電子式互感器為對(duì)象設(shè)計(jì)了一種實(shí)用化的數(shù)字系統(tǒng)。以精密電阻分壓器作為電壓傳感器,電流傳感器則采用基于數(shù)據(jù)融合算法的LPCT和PCB空心線圈的組合結(jié)構(gòu)。本文首先解決了互感器間的同步與傳感器間的內(nèi)部同步問(wèn)題,進(jìn)而依照IEC61850-9-1標(biāo)準(zhǔn),實(shí)現(xiàn)了組合型電子式互感器的100M以太網(wǎng)接口。 電子式電流互感器在高電壓等級(jí)的應(yīng)用研究中,ECT高壓側(cè)的電源問(wèn)題是關(guān)鍵技術(shù)之一。論文首先分析了兩種電源方案:取電CT電源和激光電源。取電CT電源通過(guò)一個(gè)特制的電流互感器(取電CT),直接從高壓側(cè)母線電流中獲取電能。在取電CT和整流橋之間設(shè)計(jì)一個(gè)串聯(lián)電感,大大降低了施加在整流橋上的的感應(yīng)電壓并限制了取電CT的輸出電流,起到了穩(wěn)定電壓和保護(hù)后續(xù)電路的作用。激光電源方案以先進(jìn)的光電轉(zhuǎn)換器、半導(dǎo)體激光二極管和光纖為基礎(chǔ),單獨(dú)一根上行光纖同時(shí)完成供能和控制信號(hào)的傳輸,在不影響光供能穩(wěn)定性的情況下,數(shù)據(jù)通信完成在短暫的供能間隔中。在高電位端控制信號(hào)通過(guò)在能量變換電路中增加一個(gè)比較器電路被提取出來(lái)。本文還提出了一種將兩種供能方式結(jié)合使用的組合電源,并設(shè)計(jì)了這兩種電源之間的切換方法,解決了取電CT電源的死區(qū)問(wèn)題,延長(zhǎng)了激光器的使用壽命。作為綜合應(yīng)用實(shí)例,設(shè)計(jì)并完成了以LPCT為傳感器、由組合電源供能、采用低功耗技術(shù)的高壓電子式電流互感器。互感器高壓側(cè)的一次轉(zhuǎn)換器能夠提供兩路傳感器數(shù)據(jù)通道,并且具有溫度補(bǔ)償和采集通道的自校正功能,在更寬溫度、更大電流范圍內(nèi)保證了極高的測(cè)量精度:互感器低電位端的二次轉(zhuǎn)換器具有數(shù)字和模擬接口,可以接收數(shù)據(jù)并發(fā)送命令來(lái)控制一次轉(zhuǎn)換器,包括同步和校正命令在內(nèi)的數(shù)據(jù)信號(hào)可以通過(guò)同一根供能光纖傳送到一次轉(zhuǎn)換器。該互感器具有在線監(jiān)測(cè)功能,這種預(yù)防性維護(hù)和自檢測(cè)功能夠提示維護(hù)或提出警告,提高了可靠性。系統(tǒng)測(cè)試表明:具有低功耗光纖發(fā)射驅(qū)動(dòng)電路的一次轉(zhuǎn)換器平均功耗在40mw以下:上行光纖中通信波特率可以達(dá)到200kb/s,下行光纖中更是高達(dá)2Mb/s;系統(tǒng)準(zhǔn)確度同時(shí)滿足IEC6044-8標(biāo)準(zhǔn)對(duì)0.2S級(jí)測(cè)量和5TPE級(jí)保護(hù)電子式互感器的要求。
標(biāo)簽: 電子式互感器 關(guān)鍵技術(shù)
上傳時(shí)間: 2013-06-09
上傳用戶:handless
交流電機(jī),特別是異步籠型電機(jī),因具有結(jié)構(gòu)簡(jiǎn)單,堅(jiān)固耐用,價(jià)格便宜等特點(diǎn)而得到廣泛應(yīng)用。經(jīng)過(guò)一個(gè)多世紀(jì)的發(fā)展,其調(diào)速方法同趨成熟,而交流調(diào)速的最理想方法還是變頻調(diào)速。隨著工業(yè)需求的快速增長(zhǎng),高壓大功率成為發(fā)展的必然趨勢(shì),但是在中高壓大功率調(diào)速領(lǐng)域,大都采用電動(dòng)機(jī)定速運(yùn)行。 直到20世界末采用全控型電力電子器件的高壓大功率交流變頻調(diào)速產(chǎn)品誕生,大功率傳動(dòng)領(lǐng)域巨大節(jié)能需求得到釋放。多電平功率變換技術(shù)可以使耐壓值較低的全控型電力電子器件可靠應(yīng)用于高壓大功率領(lǐng)域,并有效減少PWM控制產(chǎn)生的高次諧波。當(dāng)前,級(jí)聯(lián)式多電平功率變換電路在高壓電機(jī)調(diào)速和電力系統(tǒng)無(wú)功補(bǔ)償領(lǐng)域已獲得實(shí)際應(yīng)用。 本課題以10kV,250kW高壓變頻器為背景,主要研究級(jí)聯(lián)式多電平高壓變頻器在異步電機(jī)控制領(lǐng)域的應(yīng)用。在對(duì)高壓變頻器工作原理與結(jié)構(gòu)設(shè)計(jì)研究的同時(shí),對(duì)主電路進(jìn)行諧波改善分析。高壓變頻器很難做成通用變頻器,所以最好設(shè)計(jì)與之相適應(yīng)的高壓變頻電機(jī)。通過(guò)對(duì)這種新型電機(jī)設(shè)計(jì)的研究,更好地發(fā)揮了變頻調(diào)速技術(shù)的優(yōu)勢(shì)。在本課題中,還采用了MATLAB7.0/Simulink6.0仿真軟件,對(duì)功率單元移相多重化進(jìn)行了仿真,為進(jìn)一步的研究做準(zhǔn)備。 依照本課題的研究,最終目的是為高壓變頻器在異步電機(jī)控制領(lǐng)域的應(yīng)用作結(jié)構(gòu)優(yōu)化,器件搭配的指導(dǎo),并在運(yùn)行過(guò)程中通過(guò)調(diào)試和仿真提供不斷改善的最佳方案。
上傳時(shí)間: 2013-05-17
上傳用戶:WMC_geophy
電氣化鐵道牽引網(wǎng)在網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)、電氣元件上具有特殊性,開(kāi)展數(shù)學(xué)模型和電氣參數(shù)研究對(duì)掌握其電氣性能具有重要意義。 本文主要介紹了電氣化鐵道牽引網(wǎng)基波與諧波的模型建立與電氣參數(shù)計(jì)算。 借用電力系統(tǒng)中的成熟計(jì)算方法,并結(jié)合牽引網(wǎng)的拓?fù)浣Y(jié)構(gòu)和導(dǎo)線的特殊性,闡述了多導(dǎo)體傳輸線的串聯(lián)阻抗和并聯(lián)導(dǎo)納矩陣的計(jì)算方法,給出了計(jì)算實(shí)例。 各種供電方式的牽引網(wǎng)都可等效成多導(dǎo)體傳輸線的供電網(wǎng)絡(luò),網(wǎng)絡(luò)上的各種電氣參數(shù)均可視為串聯(lián)元件和并聯(lián)元件。牽引網(wǎng)的均勻多導(dǎo)體傳輸線采用等值Ⅱ型電路,對(duì)其它各種串聯(lián)與并聯(lián)元件也分別建模。 用C#語(yǔ)言編制了牽引網(wǎng)模型仿真計(jì)算軟件,實(shí)現(xiàn)了諧波在牽引網(wǎng)中的分布計(jì)算。為計(jì)算程序設(shè)計(jì)了良好的人機(jī)界面,通過(guò)界面可以完成牽引網(wǎng)的參數(shù)輸入與外部數(shù)據(jù)讀取,計(jì)算結(jié)果再用.csv格式輸出。其中,詳細(xì)介紹了LU三角算法。 最后,結(jié)合京哈線薊縣南牽引變電所供電區(qū)段高次諧波諧振測(cè)試,分析了牽引網(wǎng)參數(shù)對(duì)高次諧波諧振的影響,說(shuō)明了諧振的原因并給出了治理措施。利用程序進(jìn)行了仿真計(jì)算,驗(yàn)證了程序的可用性。
上傳時(shí)間: 2013-07-23
上傳用戶:hooooor
基于51單片機(jī)的低價(jià)型遠(yuǎn)程多用途無(wú)線遙控模塊.rar
標(biāo)簽: 51單片機(jī) 遠(yuǎn)程 多用
上傳時(shí)間: 2013-04-24
上傳用戶:小小小熊
并口ISP下載線軟件及說(shuō)明 初學(xué)者很好的練手用的.
上傳時(shí)間: 2013-04-24
上傳用戶:chfanjiang
隨著現(xiàn)代工業(yè)的迅猛發(fā)展,對(duì)作為工業(yè)裝備重要驅(qū)動(dòng)源之一的伺服系統(tǒng)的性能提出了越來(lái)越高的要求。永磁同步電機(jī)( PMSM)作為交流伺服系統(tǒng)的執(zhí)行元件具有結(jié)構(gòu)簡(jiǎn)單、功率密度高、效率高、易于散熱及維護(hù)保養(yǎng)等優(yōu)點(diǎn),正得到越來(lái)越廣泛地應(yīng)用。要構(gòu)建高性能的伺服系統(tǒng),好的伺服控制系統(tǒng)則必不可缺,本論文主要圍繞高性能的永磁同步電流伺服控制系統(tǒng)這一主題展開(kāi)研究。 根據(jù)永磁同步電機(jī)的動(dòng)態(tài)dq數(shù)學(xué)模型,從實(shí)現(xiàn)高性能的轉(zhuǎn)矩控制出發(fā),對(duì)永磁同步電機(jī)的矢量控制技術(shù)和直接轉(zhuǎn)矩控制技術(shù)等控制策略進(jìn)行了比較分析。針對(duì)本伺服系統(tǒng)永磁同步電機(jī)的轉(zhuǎn)子結(jié)構(gòu)特點(diǎn),選用了具有線性控制轉(zhuǎn)矩特性,能獲得比較平穩(wěn)轉(zhuǎn)矩輸出的基于轉(zhuǎn)子磁場(chǎng)定向的id=0的矢量控制策略,同時(shí)還介紹了該策略的重要組成部分空間矢量脈寬調(diào)制技術(shù)(SVPWM),并在MATLAB仿真平臺(tái)對(duì)所選控制方案進(jìn)行了仿真研究。 對(duì)控制系統(tǒng)的軟件部分進(jìn)行了設(shè)計(jì),詳細(xì)分析了針對(duì)16位定點(diǎn)DSP控制器TMS320LF2407A的程序設(shè)計(jì)特點(diǎn),建立了電機(jī)的標(biāo)幺值模型,解決了變量的定標(biāo)問(wèn)題。并介紹了電機(jī)控制程序的總體結(jié)構(gòu)以及相關(guān)模塊的詳細(xì)設(shè)計(jì)過(guò)程。 為實(shí)現(xiàn)高性能的伺服控制系統(tǒng),使伺服系統(tǒng)輸出平滑的轉(zhuǎn)矩,本文還對(duì)電壓型PWM逆變器“死區(qū)效應(yīng)”引入的轉(zhuǎn)矩脈動(dòng)進(jìn)行了分析,分析表明了在永磁同步電機(jī)矢量控制系統(tǒng)中,由“死區(qū)效應(yīng)”造成的誤差電壓矢量與永磁同步電機(jī)轉(zhuǎn)子位置之間的關(guān)系,并應(yīng)用一種實(shí)用的死區(qū)補(bǔ)償技術(shù)減小了轉(zhuǎn)矩脈動(dòng),提高了系統(tǒng)的性能。 最后在伺服系統(tǒng)實(shí)驗(yàn)平臺(tái)上對(duì)伺服控制系統(tǒng)進(jìn)行綜合調(diào)試,并在此基礎(chǔ)上做了大量的實(shí)驗(yàn)研究,實(shí)驗(yàn)結(jié)果表明系統(tǒng)性能可靠且擁有優(yōu)良的調(diào)速性能。
標(biāo)簽: 永磁同步電機(jī) 伺服控制 系統(tǒng)研究
上傳時(shí)間: 2013-06-18
上傳用戶:scorpion
我國(guó)電網(wǎng)無(wú)功補(bǔ)償容量不足和配備不合理,特別是可調(diào)節(jié)的無(wú)功容量不足,快速響應(yīng)的無(wú)功調(diào)節(jié)設(shè)備更少。沖擊性負(fù)荷更會(huì)使得電網(wǎng)無(wú)功功率不平衡,將導(dǎo)致系統(tǒng)電壓的巨大波動(dòng)、善變,嚴(yán)重時(shí)會(huì)導(dǎo)致用電設(shè)備的損壞,出現(xiàn)系統(tǒng)電壓崩潰和穩(wěn)定性被破壞事故。 FC+TCR型靜止無(wú)功補(bǔ)償裝置響應(yīng)速度快,可以動(dòng)態(tài)補(bǔ)償無(wú)功功率,提高系統(tǒng)功率因數(shù),抑制系統(tǒng)電壓波動(dòng)和閃變,因此在電氣化鐵路、電弧爐、軋機(jī)等的負(fù)荷無(wú)功補(bǔ)償上得到廣泛應(yīng)用。中小用戶由于成本高較少使用,但中小用戶無(wú)功補(bǔ)償容量及市場(chǎng)巨大,研制適合中小用戶的FC+TCR型靜止無(wú)功補(bǔ)償裝置很有必要。基于此目的,本文研制一臺(tái)10kV FC+TCR型靜止無(wú)功補(bǔ)償裝置,并以此為研究對(duì)象進(jìn)行設(shè)計(jì)理論研究工作。 本文根據(jù)負(fù)荷無(wú)功功率的變化情況,計(jì)算了靜止無(wú)功補(bǔ)償裝置的主電路參數(shù),設(shè)計(jì)配備了高電位取能觸發(fā)板和BOD過(guò)電壓保護(hù)板。選擇以TMS320F2812為核心的嵌入式控制板為主要部件,設(shè)計(jì)信號(hào)接入電路和晶閘管觸發(fā)脈沖形成電路,構(gòu)成最基本的靜止無(wú)功補(bǔ)償控制器。 基于瞬時(shí)無(wú)功補(bǔ)償理論和不平衡負(fù)荷的平衡化原理(Steinmetz原理),建立補(bǔ)償電納計(jì)算模型,通過(guò)電壓電流瞬時(shí)值采樣計(jì)算需要補(bǔ)償?shù)乃矔r(shí)無(wú)功功率和電納,根據(jù)補(bǔ)償電納通過(guò)查表方法求得晶閘管的控制角,并將其應(yīng)用到靜止無(wú)功補(bǔ)償裝置樣機(jī)中。仿真結(jié)果表明,算法是快速有效和準(zhǔn)確的,主電路的參數(shù)是合理的,具有實(shí)際工程應(yīng)用價(jià)值。
標(biāo)簽: 10 kV 無(wú)功補(bǔ)償
上傳時(shí)間: 2013-08-02
上傳用戶:wzr0701
蟲(chóng)蟲(chóng)下載站版權(quán)所有 京ICP備2021023401號(hào)-1