太赫茲成像技術在生物醫學的應用模式識別和層析重建 英文版(腦控技術叢書)太赫茲,腦控,無線電,醫學,生物
上傳時間: 2022-06-08
上傳用戶:
光電跟蹤系統的組成框圖如圖3-1 所示,從獨立功能單體上分主要由激光測距儀、電視跟蹤儀、紅外跟蹤儀組成;從功能模塊分主要有傳感器模塊、轉臺及測角和信息處理單元組成。其中電視攝像儀、紅外熱像儀和激光測距主機為傳感器模塊,激光信息處理機、圖像跟蹤處理器、伺服控制和信息管理機為信息處理單元。圖2-1 光電跟蹤系統組成框圖光電跟蹤系統信息處理采用融合技術。在光電跟蹤系統中,信息管理機、電視/紅外圖像跟蹤處理器、激光信息處理機和伺服控制為信息處理單元。信息管理機既負責光電跟蹤系統和火控臺之間信息的交換,又負責光電跟蹤系統內部各信息處理單元之間的信息融合和數據交流;圖像跟蹤處理器進行電視/紅外跟蹤儀的圖像跟蹤信息處理;激光信息處理機是激光測距儀的指控中心和數據處理中心;伺服控制系統實現伺服機動系統的調度。
上傳時間: 2022-06-23
上傳用戶:canderile
嵌入式是近年來飛速發展的熱點技術。嵌入式處理器和嵌入式操作系統不斷推陳出新,使嵌入式系統的性能與日俱增。嵌入式系統能完成很多復雜的任務,而且具有成本低、功耗小和便攜式的特點,所以它在很多領域已取代了通用計算機。使用嵌入式技術設計CCD成像系統可以使系統擺脫對計算機的依賴,省卻信號的傳輸。本論文將嵌入式技術應用于CCD成像系統的設計,成功研制了以嵌入式系統為控制核心的線陣CCD光譜采集系統和科學級面陣CCD成像系統,驗證了嵌入式技術設計實現CCD成像系統的可行性。這兩套系統都以嵌入式處理器和嵌入式操作系統為控制核心,無需依賴計算機,結構精巧,成本低,功耗小,具有便攜式的特點,在光譜和微光成像實驗中得到了理想的實驗結果。本文詳細介紹了它們的硬件結構和軟件設計流程。論文從CCD的結構原理和信號特點出發,深入分析了CCD成像系統的設計要點,總結了傳統成像系統的設計方法,在此基礎上探討了如何利用嵌入式系統來設計CCD成像系統。論文還介紹了嵌入式系統的開發方法,包括嵌入式處理器的介紹和選擇依據,嵌入式處理器模塊的使用方法,嵌入式操作系統(嵌入式Linux)下的程序開發方法。
上傳時間: 2022-06-23
上傳用戶:
激光雷達是激光技術和雷達技術相結合的產物,其工作原理與傳統雷達基本相同,都是通過雷達發射信號,由接收系統收集從目標返回的信號,并對其進行觀察和處理來發現目標、測量目標的坐標和運動參數等1-7].由于激光雷達發射的激光頻率較微波高幾個數量級,故頻率的量變使得激光雷達技術產生了質的變革.因此,激光雷達在精度、分辨率、抗干擾性和某些特定參數測量能力方面都是普通雷達所無法比擬的.雷達系統的核心部分是三維成像激光雷達信號處理系統,其處理的數據量大、實時性要求高,因此,對信號處理系統的設計要求很高,由于FPGA運算速度快、實時性好,在數字信號處理方面有明顯的優勢,故設計一種基于FPGA和MCU的三維成像激光雷達信號處理系統,具有重要的現實意義.1成像激光雷達原理與系統方案設計激光雷達系統由雷達發射系統、接收系統、控制系統和信號處理系統等部分構成,其原理框圖見圖1.發射系統與接收系統用于發射一定的激光波束并接收目標的反射光信號,同時將光信號轉化為電信號,包括激光器、光電探測器、發射光學系統和接收光學系統幾部分;信號處理系統是將光電探測器接收到的信號進行放大,并從信號中提取有用信息,然后將這種信息轉化為所需要的信號形式,包括前置放大、信號處理和數據采集等部分;處理與顯示系統是整個成像系統的終端部分,其功能是將采集到的數據形成圖像并顯示.
上傳時間: 2022-06-24
上傳用戶:
雷達成像原理詳細介紹了雷達的基本原理,數據處理、雷達測量精度、雷達波形、SAR成像等內容
標簽: 雷達成像
上傳時間: 2022-06-26
上傳用戶:
像計算機科學家一樣思考Python-第2版,本書的目標是教你像計算機科學家一樣思考。這一思考方式集成了數學、工程以及自然科學的一些最好的特點。像數學家一樣,計算機科學家使用形式語言表示思想(具體來說是計算)。像工程師一樣,計算機科學家設計東西,將零件組成系統,在各種選擇之間尋求平衡。像科學家一樣,計算機科學家觀察復雜系統的行為,形成假設并且對預測進行檢驗。對于計算機科學家,最重要的技能是問題求解 的能力。問題求解 (problem solving) 意味著對問題進行形式化,尋求創新型的解決方案,并且清晰、準確地表達解決方案的能力。事實證明,學習編程的過程是鍛煉問題解決能力的一個絕佳機會。這就是為什么本章被稱為 ‘‘程序之道’’。一方面,你將學習如何編程,這本身就是一個有用的技能。另一方面,你將把編程作為實現自己目的的手段。隨著學習的深入,你會更清楚自己的目的。
上傳時間: 2022-07-26
上傳用戶:
為設計高性能、低損耗的電機,需要準確地分析電機鐵耗。本文從鐵磁材料的磁化特點出發,以分離鐵耗模型為基礎,對交變磁化以及旋轉磁化條件下鐵磁材料和電機的鐵耗進行分析和計算,分別從理論和實踐角度著重就電機鐵耗計算和測量中的一些相關問題作了深入研究。 按照分離鐵耗模型,鐵心損耗可以分成磁滯損耗、渦流損耗和異常損耗。本文首先從交流磁滯回線的產生機理出發,在Preisach靜態磁滯模型的基礎上,利用極限磁滯回線的對稱性,采用人工神經網絡技術,建立了Preisach人工神經網絡磁滯仿真模型,實現了對鐵磁材料交流磁滯回線的理論計算,為磁滯損耗的理論分析和計算奠定了基礎;為對交流磁滯回線進行實測,本文給出了一種采用愛潑斯坦方圈測量鐵磁材料交流磁滯回線與磁滯損耗的新方法,該方法克服了環形樣片測量法的不足,操作簡單,且測量精度高,具有較好的實用價值。利用該方法得到的實驗數據很好地驗證了理論計算結果。 對渦流損耗以及異常損耗的計算模型,本文系統地給出了其推導過程,對模型中的參數進一步加以明確,并對模型的特點進行了分析。鐵磁材料異常損耗計算模型是基于統計學原理推導而來的,模型中參數的確定涉及到鐵磁材料的微觀特性,本文給出了通過實驗確定其參數的具體方法;考慮到工程中異常損耗計算模型是其理論模型的簡化形式,文中對兩者的差別進行了分析。 在分析電機鐵耗時,既要考慮鐵心材料本身的損耗特性,也要考慮電機供電方式以及鐵心中磁場變化等因素對鐵耗的影響。在對鐵磁材料損耗特性分析的基礎上,本文考慮到局部磁滯回環對電機鐵耗的影響,推導了計及局部磁滯作用的電機鐵耗模型,并從理論上對C.P.Steinmetz的磁滯損耗經驗公式進行了驗證,從而明確了公式中經驗系數的物理意義;同時通過實驗研究,分析了磁化頻率對磁滯損耗系數的影響,提出了在磁化頻率較高時分段確定磁滯損耗系數的方法;考慮到現代電機控制策略以及供電方式的多樣性,本文對正弦波、方波以及三角波電壓供電時鐵心材料的交變鐵耗模型分別進行了推導,給出了其解析表達式,并通過實測證明了模型的有效性;對SPWM這類應用較為廣泛的非正弦供電方式,推導了電機交變損耗的一般計算模型,分析了SPWM變頻器供電時電機鐵耗與變頻器參數的關系,給出了其關系的數量表達式; 同時采用改進的愛潑斯坦方圈試驗平臺對非正弦供電條件下的鐵磁材料損耗和電機鐵耗進行了實驗研究。 考慮到電機鐵心制造過程中沖壓對鐵心材料特性的影響,本文提出了一套簡便的對鐵磁材料進行沖壓影響研究的實驗方法,利用該方法,有效地對材料的沖壓影響特性進行了分析。在實驗研究的基礎上,本文推導了考慮沖壓影響時的鐵磁材料損耗的修正系數,從而在傳統交變鐵耗分離模型的基礎上,建立了計及沖壓影響的電機鐵耗計算模型。對模型中引入的沖壓影響修正系數,給出了詳細的推導過程和明確的計算方法,從而使傳統的經驗修正方法得到改善。 在旋轉電機中,除交變磁化外,同時還存在大量的旋轉磁化。本文對旋轉磁化的物理機理進行了初步探討,分析了旋轉磁化條件下的損耗特點,系統介紹了當前鐵磁材料旋轉磁化性能以及旋轉磁化損耗實驗測量和理論計算的方法和手段。 在以上鐵耗理論的基礎上,充分考慮鐵心的非線性及磁滯特性,本文建立了一般條件下的鐵心動態電路模型,并將該模型應用于異步電動機鐵心等效電路中,推導了異步電動機動態鐵耗的分離等效電阻。以一臺三相異步電動機為樣機,采用以上鐵耗的動態分離等效電阻,有效地對電機鐵耗進行了分離,從而為深入研究電機的動態鐵耗特性提供了便利。 論文最后以一臺永磁無刷直流電機為例,對電機的運行特性以及鐵心損耗進行了分析計算。分析中應用場路結合法,建立了永磁無刷電機換流等效電路模型,采用鏡像法建立了深槽無刷電機電樞反應分析模型;在電機鐵耗分析中,推導了考慮旋轉磁化的電機鐵耗工程計算模型,對樣機鐵耗進行了理論計算,并通過構建實驗平臺,對旋轉磁化條件下的樣機空載鐵耗進行了測量,最終理論值與實測值吻合良好,證明了上述方法的有效性。
上傳時間: 2013-07-02
上傳用戶:不挑食的老鼠
超聲波電機(Ultrasonic Motor簡稱USM)是八十年代發展起來的新型微電機。本文針對超聲波電機及其控制技術的研究現狀和發展趨勢,以我國研究技術相對比較成熟并有產業化前景的行波超聲波電機(Traveling-wave Ultrasonic Motor簡稱TUSM)的伺服控制技術為研究對象,以直徑60mm的行波超聲波電機TUSM60為研究實例,在特性測試、動穩態性能分析,辨識模型建立、控制策略與控制算法的選擇與實現等方面展開研究。本論具體的研究內容為: 在分析超聲波電機研究歷史和現狀的基礎上,結合國內外超聲波電機特別是行波超聲波電機控制技術的發展趨勢,重點論述了行波超聲波電機及其驅動控制技術的研究進展。 介紹行波超聲波電機的基本結構,并從該電機的主要理論基礎--壓電原理、行波合成、接觸模型出發,分析了行波超聲波電機定子質點的運動方程.并結合定轉子摩擦接觸特點,分析了行波超聲波電機的運行機理。 根據對行波超聲波電機測試和高精度控制的要求,研制出基于雙DSP和FPGA的超聲波電機高性能測試控制平臺。其中控制核心采用了雙DSP結構,可以在對行波超聲波電機進行控制的同時,將必要的參數讀取出來進行分析和研究。為行波超聲波電機瞬態特性分析以及控制策略、控制算法的深入研究打下了基礎。 對電機的瞬態、穩態特性進行的測試,可以分析驅動頻率、電壓以及相位差等調節量對電機輸出的影響。在此基礎上進一步對行波超聲波電機的調節方式、控制算法選擇方面進行分析,并得到相應結論。 通過對實驗數據的總結和歸納,利用系統辨識中的非參數方法,建立在特定頻率條件下的近似線性模型。在行波超聲波電機工作范圍內,辨識若干組不同頻率條件下的近似線性模型,將這些模型的參數進行二維或三維擬合,可以得到一個關于行波超聲波電機傳遞函數的模型。辨識模型的建立為合理的選擇和優化控制參數,控制效果的驗證等提供了行之有效的手段。 在對行波超聲波電機的速度控制、位置控制展開的研究中.首先利用遺傳算法對常規PI恒轉速控制的控制參數整定及修正方法進行了研究;利用神經元的在線自學習能力,研究和設計單神經元PID-PI轉速控制器,提高控制系統對電機非線性和時變性的適應能力;為了消除在伺服控制中,單一調節量(驅動頻率)情況下,低轉速的跳躍問題,研究和討論了多調節量分段控制方法,并利用模糊控制對控制方法的有效性進行了驗證;在位置控制中,利用轉速控制研究的結果,研究和設計了位置--速度雙環(串級)控制器,實現了電機高精度位置伺服控制。 通過對已有控制系統的改進和簡化,設計和研制了具有實用化價值行波超聲波電機控制器:并將研究成果應用于針對核磁成像設備而設計的行波超聲波電機隨動控制系統中,同時嘗試了將該控制器用于高精度X-Y兩維定位平臺。
上傳時間: 2013-07-13
上傳用戶:mpquest
智能型充電器電源和顯示的設計 隨著越來越多的手持式電器的出現,對高性能、小尺寸、重量輕的電池充電器的需求也越來越大。電池技術的持續進步也要求更復雜的充電算法以實現快速、安全的充電。因此需要對充電過程進行更精確的監控,以縮短充電時間、達到最大的電池容量,并防止電池損壞。AVR 已經在競爭中領先了一步,被證明是下一代充電器的完美控制芯片。Atmel AVR 微處理器是當前市場上能夠以單片方式提供Flash、EEPROM 和10 位ADC的最高效的8 位RISC 微處理器。由于程序存儲器為Flash,因此可以不用象MASK ROM一樣,有幾個軟件版本就庫存幾種型號。Flash 可以在發貨之前再進行編程,或是在PCB貼裝之后再通過ISP 進行編程,從而允許在最后一分鐘進行軟件更新。EEPROM 可用于保存標定系數和電池特性參數,如保存充電記錄以提高實際使用的電池容量。10位A/D 轉換器可以提供足夠的測量精度,使得充好后的容量更接近其最大容量。而其他方案為了達到此目的,可能需要外部的ADC,不但占用PCB 空間,也提高了系統成本。AVR 是目前唯一的針對像 “C”這樣的高級語言而設計的8 位微處理器。C 代碼似的設計很容易進行調整以適合當前和未來的電池,而本次智能型充電器顯示程序的編寫則就是用C語言寫的。
上傳時間: 2013-05-18
上傳用戶:zhaiye
矢量控制作為一種先進的控制策略,是在電機統一理論、機電能量轉換和坐標變換理論的基礎上發展起來的,具有先進性、新穎性和實用性的特點。它是以交流電動機的雙軸理論為依據,將定子電流矢量分解為按轉子磁場定向的兩個直流分量:一個分量與轉子磁鏈矢量重合,稱為勵磁電流分量;另一個分量與轉子磁鏈矢量垂直,稱為轉矩電流分量。通過控制定子電流矢量在旋轉坐標系的位置及大小,即可控制勵磁電流分量和轉矩電流分量的大小,實現像直流電動機那樣對磁場和轉矩的解耦控制。本文研究的是以TMS320LF2407ADSP和FPGA為控制核心的矢量控制變頻調速系統。 分析了脈寬調制和矢量控制的原理與實現方法,從而建立了異步電動機的數學模型。對于矢量控制,分析了矢量控制的基本原理和控制算法,推導了三相坐標系、兩相靜止與旋轉坐標系下的電機基本方程和矢量控制基本公式。同時在進行相應的坐標變換以后,得到了間接磁場定向型變頻調速系統的矢量控制圖,并結合TMS320LF2407ADSP完成了具體的實現方法,根據矢量控制的基本原理,設計了一種基于DSP和FPGA的SVPWM冗余系統。 在硬件方面,以TMS320LF2407ADSP和EP1C12Q240FPGA為控制器,兩者之間通過雙口RAMIDT7130完成數據的交換,并能在一方失控時另一方立即產生SVPWM波形。同時完成無線遙控、速度給定、數據顯示以及電流、速度檢測和保護等功能,也對變頻調速系統的主電路、電源電路、FPGA配置電路、無線遙控電路、LCD顯示電路、保護電路、電流和轉速檢測電路作了簡單的介紹。在軟件方面,給出了基于DSP的矢量控制系統軟件流程圖,并用C語言進行了編程。用硬件描述語言Verilog對FPGA進行了編程,并給出了相關的仿真波形。MATLAB仿真結果表明,本文研究的調速系統的矢量控制算法是成功的,并實現了對電機的高性能控制。
上傳時間: 2013-07-09
上傳用戶:jogger_ding