摘要: 介紹了時(shí)鐘分相技術(shù)并討論了時(shí)鐘分相技術(shù)在高速數(shù)字電路設(shè)計(jì)中的作用。 關(guān)鍵詞: 時(shí)鐘分相技術(shù); 應(yīng)用 中圖分類號(hào): TN 79 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào): 025820934 (2000) 0620437203 時(shí)鐘是高速數(shù)字電路設(shè)計(jì)的關(guān)鍵技術(shù)之一, 系統(tǒng)時(shí)鐘的性能好壞, 直接影響了整個(gè)電路的 性能。尤其現(xiàn)代電子系統(tǒng)對(duì)性能的越來(lái)越高的要求, 迫使我們集中更多的注意力在更高頻率、 更高精度的時(shí)鐘設(shè)計(jì)上面。但隨著系統(tǒng)時(shí)鐘頻率的升高。我們的系統(tǒng)設(shè)計(jì)將面臨一系列的問(wèn) 題。 1) 時(shí)鐘的快速電平切換將給電路帶來(lái)的串?dāng)_(Crosstalk) 和其他的噪聲。 2) 高速的時(shí)鐘對(duì)電路板的設(shè)計(jì)提出了更高的要求: 我們應(yīng)引入傳輸線(T ransm ission L ine) 模型, 并在信號(hào)的匹配上有更多的考慮。 3) 在系統(tǒng)時(shí)鐘高于100MHz 的情況下, 應(yīng)使用高速芯片來(lái)達(dá)到所需的速度, 如ECL 芯 片, 但這種芯片一般功耗很大, 再加上匹配電阻增加的功耗, 使整個(gè)系統(tǒng)所需要的電流增大, 發(fā) 熱量增多, 對(duì)系統(tǒng)的穩(wěn)定性和集成度有不利的影響。 4) 高頻時(shí)鐘相應(yīng)的電磁輻射(EM I) 比較嚴(yán)重。 所以在高速數(shù)字系統(tǒng)設(shè)計(jì)中對(duì)高頻時(shí)鐘信號(hào)的處理應(yīng)格外慎重, 盡量減少電路中高頻信 號(hào)的成分, 這里介紹一種很好的解決方法, 即利用時(shí)鐘分相技術(shù), 以低頻的時(shí)鐘實(shí)現(xiàn)高頻的處 理。 1 時(shí)鐘分相技術(shù) 我們知道, 時(shí)鐘信號(hào)的一個(gè)周期按相位來(lái)分, 可以分為360°。所謂時(shí)鐘分相技術(shù), 就是把 時(shí)鐘周期的多個(gè)相位都加以利用, 以達(dá)到更高的時(shí)間分辨。在通常的設(shè)計(jì)中, 我們只用到時(shí)鐘 的上升沿(0 相位) , 如果把時(shí)鐘的下降沿(180°相位) 也加以利用, 系統(tǒng)的時(shí)間分辨能力就可以 提高一倍(如圖1a 所示)。同理, 將時(shí)鐘分為4 個(gè)相位(0°、90°、180°和270°) , 系統(tǒng)的時(shí)間分辨就 可以提高為原來(lái)的4 倍(如圖1b 所示)。 以前也有人嘗試過(guò)用專門的延遲線或邏輯門延時(shí)來(lái)達(dá)到時(shí)鐘分相的目的。用這種方法產(chǎn)生的相位差不夠準(zhǔn)確, 而且引起的時(shí)間偏移(Skew ) 和抖動(dòng) (J itters) 比較大, 無(wú)法實(shí)現(xiàn)高精度的時(shí)間分辨。 近年來(lái)半導(dǎo)體技術(shù)的發(fā)展, 使高質(zhì)量的分相功能在一 片芯片內(nèi)實(shí)現(xiàn)成為可能, 如AMCC 公司的S4405, CY2 PRESS 公司的CY9901 和CY9911, 都是性能優(yōu)異的時(shí)鐘 芯片。這些芯片的出現(xiàn), 大大促進(jìn)了時(shí)鐘分相技術(shù)在實(shí)際電 路中的應(yīng)用。我們?cè)谶@方面作了一些嘗試性的工作: 要獲得 良好的時(shí)間性能, 必須確保分相時(shí)鐘的Skew 和J itters 都 比較小。因此在我們的設(shè)計(jì)中, 通常用一個(gè)低頻、高精度的 晶體作為時(shí)鐘源, 將這個(gè)低頻時(shí)鐘通過(guò)一個(gè)鎖相環(huán)(PLL ) , 獲得一個(gè)較高頻率的、比較純凈的時(shí)鐘, 對(duì)這個(gè)時(shí)鐘進(jìn)行分相, 就可獲得高穩(wěn)定、低抖動(dòng)的分 相時(shí)鐘。 這部分電路在實(shí)際運(yùn)用中獲得了很好的效果。下面以應(yīng)用的實(shí)例加以說(shuō)明。2 應(yīng)用實(shí)例 2. 1 應(yīng)用在接入網(wǎng)中 在通訊系統(tǒng)中, 由于要減少傳輸 上的硬件開(kāi)銷, 一般以串行模式傳輸 圖3 時(shí)鐘分為4 個(gè)相位 數(shù)據(jù), 與其同步的時(shí)鐘信號(hào)并不傳輸。 但本地接收到數(shù)據(jù)時(shí), 為了準(zhǔn)確地獲取 數(shù)據(jù), 必須得到數(shù)據(jù)時(shí)鐘, 即要獲取與數(shù) 據(jù)同步的時(shí)鐘信號(hào)。在接入網(wǎng)中, 數(shù)據(jù)傳 輸?shù)慕Y(jié)構(gòu)如圖2 所示。 數(shù)據(jù)以68MBös 的速率傳輸, 即每 個(gè)bit 占有14. 7ns 的寬度, 在每個(gè)數(shù)據(jù) 幀的開(kāi)頭有一個(gè)用于同步檢測(cè)的頭部信息。我們要找到與它同步性好的時(shí)鐘信號(hào), 一般時(shí)間 分辨應(yīng)該達(dá)到1ö4 的時(shí)鐘周期。即14. 7ö 4≈ 3. 7ns, 這就是說(shuō), 系統(tǒng)時(shí)鐘頻率應(yīng)在300MHz 以 上, 在這種頻率下, 我們必須使用ECL inp s 芯片(ECL inp s 是ECL 芯片系列中速度最快的, 其 典型門延遲為340p s) , 如前所述, 這樣對(duì)整個(gè)系統(tǒng)設(shè)計(jì)帶來(lái)很多的困擾。 我們?cè)谶@里使用鎖相環(huán)和時(shí)鐘分相技術(shù), 將一個(gè)16MHz 晶振作為時(shí)鐘源, 經(jīng)過(guò)鎖相環(huán) 89429 升頻得到68MHz 的時(shí)鐘, 再經(jīng)過(guò)分相芯片AMCCS4405 分成4 個(gè)相位, 如圖3 所示。 我們只要從4 個(gè)相位的68MHz 時(shí)鐘中選擇出與數(shù)據(jù)同步性最好的一個(gè)。選擇的依據(jù)是: 在每個(gè)數(shù)據(jù)幀的頭部(HEAD) 都有一個(gè)8bit 的KWD (KeyWord) (如圖1 所示) , 我們分別用 這4 個(gè)相位的時(shí)鐘去鎖存數(shù)據(jù), 如果經(jīng)某個(gè)時(shí)鐘鎖存后的數(shù)據(jù)在這個(gè)指定位置最先檢測(cè)出這 個(gè)KWD, 就認(rèn)為下一相位的時(shí)鐘與數(shù)據(jù)的同步性最好(相關(guān))。 根據(jù)這個(gè)判別原理, 我們?cè)O(shè)計(jì)了圖4 所示的時(shí)鐘分相選擇電路。 在板上通過(guò)鎖相環(huán)89429 和分相芯片S4405 獲得我們所要的68MHz 4 相時(shí)鐘: 用這4 個(gè) 時(shí)鐘分別將輸入數(shù)據(jù)進(jìn)行移位, 將移位的數(shù)據(jù)與KWD 作比較, 若至少有7bit 符合, 則認(rèn)為檢 出了KWD。將4 路相關(guān)器的結(jié)果經(jīng)過(guò)優(yōu)先判選控制邏輯, 即可輸出同步性最好的時(shí)鐘。這里, 我們運(yùn)用AMCC 公司生產(chǎn)的 S4405 芯片, 對(duì)68MHz 的時(shí)鐘進(jìn)行了4 分 相, 成功地實(shí)現(xiàn)了同步時(shí)鐘的獲取, 這部分 電路目前已實(shí)際地應(yīng)用在某通訊系統(tǒng)的接 入網(wǎng)中。 2. 2 高速數(shù)據(jù)采集系統(tǒng)中的應(yīng)用 高速、高精度的模擬- 數(shù)字變換 (ADC) 一直是高速數(shù)據(jù)采集系統(tǒng)的關(guān)鍵部 分。高速的ADC 價(jià)格昂貴, 而且系統(tǒng)設(shè)計(jì) 難度很高。以前就有人考慮使用多個(gè)低速 圖5 分相技術(shù)應(yīng)用于采集系統(tǒng) ADC 和時(shí)鐘分相, 用以替代高速的ADC, 但由 于時(shí)鐘分相電路產(chǎn)生的相位不準(zhǔn)確, 時(shí)鐘的 J itters 和Skew 比較大(如前述) , 容易產(chǎn)生較 大的孔徑晃動(dòng)(Aperture J itters) , 無(wú)法達(dá)到很 好的時(shí)間分辨。 現(xiàn)在使用時(shí)鐘分相芯片, 我們可以把分相 技術(shù)應(yīng)用在高速數(shù)據(jù)采集系統(tǒng)中: 以4 分相后 圖6 分相技術(shù)提高系統(tǒng)的數(shù)據(jù)采集率 的80MHz 采樣時(shí)鐘分別作為ADC 的 轉(zhuǎn)換時(shí)鐘, 對(duì)模擬信號(hào)進(jìn)行采樣, 如圖5 所示。 在每一采集通道中, 輸入信號(hào)經(jīng)過(guò) 緩沖、調(diào)理, 送入ADC 進(jìn)行模數(shù)轉(zhuǎn)換, 采集到的數(shù)據(jù)寫入存儲(chǔ)器(M EM )。各個(gè) 采集通道采集的是同一信號(hào), 不過(guò)采樣 點(diǎn)依次相差90°相位。通過(guò)存儲(chǔ)器中的數(shù) 據(jù)重組, 可以使系統(tǒng)時(shí)鐘為80MHz 的采 集系統(tǒng)達(dá)到320MHz 數(shù)據(jù)采集率(如圖6 所示)。 3 總結(jié) 靈活地運(yùn)用時(shí)鐘分相技術(shù), 可以有效地用低頻時(shí)鐘實(shí)現(xiàn)相當(dāng)于高頻時(shí)鐘的時(shí)間性能, 并 避免了高速數(shù)字電路設(shè)計(jì)中一些問(wèn)題, 降低了系統(tǒng)設(shè)計(jì)的難度。
標(biāo)簽: 時(shí)鐘 分相 技術(shù)應(yīng)用
上傳時(shí)間: 2013-12-17
上傳用戶:xg262122
PCB 被動(dòng)組件的隱藏特性解析 傳統(tǒng)上,EMC一直被視為「黑色魔術(shù)(black magic)」。其實(shí),EMC是可以藉由數(shù)學(xué)公式來(lái)理解的。不過(guò),縱使有數(shù)學(xué)分析方法可以利用,但那些數(shù)學(xué)方程式對(duì)實(shí)際的EMC電路設(shè)計(jì)而言,仍然太過(guò)復(fù)雜了。幸運(yùn)的是,在大多數(shù)的實(shí)務(wù)工作中,工程師并不需要完全理解那些復(fù)雜的數(shù)學(xué)公式和存在于EMC規(guī)范中的學(xué)理依據(jù),只要藉由簡(jiǎn)單的數(shù)學(xué)模型,就能夠明白要如何達(dá)到EMC的要求。本文藉由簡(jiǎn)單的數(shù)學(xué)公式和電磁理論,來(lái)說(shuō)明在印刷電路板(PCB)上被動(dòng)組件(passivecomponent)的隱藏行為和特性,這些都是工程師想讓所設(shè)計(jì)的電子產(chǎn)品通過(guò)EMC標(biāo)準(zhǔn)時(shí),事先所必須具備的基本知識(shí)。導(dǎo)線和PCB走線導(dǎo)線(wire)、走線(trace)、固定架……等看似不起眼的組件,卻經(jīng)常成為射頻能量的最佳發(fā)射器(亦即,EMI的來(lái)源)。每一種組件都具有電感,這包含硅芯片的焊線(bond wire)、以及電阻、電容、電感的接腳。每根導(dǎo)線或走線都包含有隱藏的寄生電容和電感。這些寄生性組件會(huì)影響導(dǎo)線的阻抗大小,而且對(duì)頻率很敏感。依據(jù)LC 的值(決定自共振頻率)和PCB走線的長(zhǎng)度,在某組件和PCB走線之間,可以產(chǎn)生自共振(self-resonance),因此,形成一根有效率的輻射天線。在低頻時(shí),導(dǎo)線大致上只具有電阻的特性。但在高頻時(shí),導(dǎo)線就具有電感的特性。因?yàn)樽兂筛哳l后,會(huì)造成阻抗大小的變化,進(jìn)而改變導(dǎo)線或PCB 走線與接地之間的EMC 設(shè)計(jì),這時(shí)必需使用接地面(ground plane)和接地網(wǎng)格(ground grid)。導(dǎo)線和PCB 走線的最主要差別只在于,導(dǎo)線是圓形的,走線是長(zhǎng)方形的。導(dǎo)線或走線的阻抗包含電阻R和感抗XL = 2πfL,在高頻時(shí),此阻抗定義為Z = R + j XL j2πfL,沒(méi)有容抗Xc = 1/2πfC存在。頻率高于100 kHz以上時(shí),感抗大于電阻,此時(shí)導(dǎo)線或走線不再是低電阻的連接線,而是電感。一般而言,在音頻以上工作的導(dǎo)線或走線應(yīng)該視為電感,不能再看成電阻,而且可以是射頻天線。
標(biāo)簽: PCB 被動(dòng)組件
上傳時(shí)間: 2013-10-09
上傳用戶:時(shí)代將軍
利用v自步離散法,得到變換器輸入控制變量與狀態(tài)變量之間的直接映射關(guān)系,基于混雜系統(tǒng)理論分析系統(tǒng)的動(dòng)態(tài)方程,建立其分段仿射模型。在此模型的基礎(chǔ)上,結(jié)合非線性預(yù)測(cè)控制算法,通過(guò)模型預(yù)測(cè)系統(tǒng)的輸出,利用反饋校正誤差,給出二次型性能指標(biāo)的優(yōu)化計(jì)算方法,并由此設(shè)計(jì)預(yù)測(cè)控制器。最后,以Buck功率變換器為研究對(duì)象,通過(guò)與峰值電流控制算法的仿真結(jié)果進(jìn)行比較,驗(yàn)證模型的正確性以及控制器設(shè)計(jì)的有效性。
上傳時(shí)間: 2013-10-30
上傳用戶:teddysha
介紹電動(dòng)汽車感應(yīng)充電系統(tǒng)松耦合變壓器的特性,通過(guò)Ansoft有限元分析軟件對(duì)松耦合變壓器進(jìn)行仿真分析,結(jié)合簡(jiǎn)化磁路模型和磁力線分布,得出大氣隙下的EE磁芯的精確模型。結(jié)合精確模型和模擬結(jié)果,給出橫截面積對(duì)耦合系數(shù)的影響,實(shí)際制作變壓器,測(cè)量發(fā)現(xiàn),面積增加,耦合系數(shù)得到提高,輸出電壓能力增強(qiáng),為松耦合變壓器的優(yōu)化設(shè)計(jì)和進(jìn)一步實(shí)驗(yàn)提供理論指導(dǎo)和參考。
上傳時(shí)間: 2013-10-10
上傳用戶:行旅的喵
光伏發(fā)電陣列是一種隨機(jī)的非線性、多變量對(duì)象,平穩(wěn)且高效地進(jìn)行最優(yōu)光能捕獲(MPPT)是光伏并網(wǎng)前級(jí)控制系統(tǒng)的關(guān)鍵。文中以光伏陣列仿真模型為基礎(chǔ),以模型輸出的PV曲線作為調(diào)節(jié)光伏陣列工作電壓的依據(jù),提出了最大功率點(diǎn)曲線擬合+PID的控制模型。仿真實(shí)驗(yàn)表明,該控制模型能夠有效提高光伏陣列的效率,較好的解決了傳統(tǒng)恒壓法效率低、擾動(dòng)法穩(wěn)定性不足等問(wèn)題。
標(biāo)簽: 模型預(yù)測(cè) 光伏并網(wǎng)系統(tǒng) 前級(jí) 控制策略
上傳時(shí)間: 2013-11-02
上傳用戶:tianyi996
在靜電傳感器測(cè)量氣/固兩相流參數(shù)的基礎(chǔ)上,以J.B.Gajewski教授的成果為基礎(chǔ),對(duì)電容的計(jì)算進(jìn)行了研究。將靜電傳感器電極與屏蔽罩間的電容cp看作圓柱型電容,對(duì)其建立的靜電傳感器數(shù)學(xué)模型中的感應(yīng)電極與屏蔽罩間電容值進(jìn)行探討,并得到了這個(gè)電容的計(jì)算式。
上傳時(shí)間: 2014-12-24
上傳用戶:erkuizhang
交直流轉(zhuǎn)換器 AT-VA2-D-A3-DD-ADL 1.產(chǎn)品說(shuō)明 AT系列轉(zhuǎn)換器/分配器主要設(shè)計(jì)使用于一般訊號(hào)迴路中之轉(zhuǎn)換與隔離;如 4~20mA、0~10V、熱電偶(Type K, J, E, T)、熱電阻(Rtd-Pt100Ω)、荷重元、電位計(jì)(三線式)、電阻(二線式)及交流電壓/電流等訊號(hào),機(jī)種齊全。 此款薄型設(shè)計(jì)的轉(zhuǎn)換器/分配器,除了能提供兩組訊號(hào)輸出(輸出間隔離)或24V激發(fā)電源供傳送器使用外,切換式電源亦提供了安裝的便利性。上方并設(shè)計(jì)了電源、輸入及輸出指示燈及可插拔式接線端子方便現(xiàn)場(chǎng)施工及工作狀態(tài)檢視。 2.產(chǎn)品特點(diǎn) 可選擇帶指撥開(kāi)關(guān)切換,六種常規(guī)輸出信號(hào)0-5V/0~10V/1~5V/2~10V/4~20mA/ 0~20mA 可自行切換。 雙回路輸出完全隔離,可選擇不同信號(hào)。 設(shè)計(jì)了電源、輸入及輸出LED指示燈,方便現(xiàn)場(chǎng)工作狀態(tài)檢視。 規(guī)格選擇表中可指定選購(gòu)0.1%精度 17.55mm薄型35mm導(dǎo)軌安裝。 依據(jù)CE國(guó)際標(biāo)準(zhǔn)規(guī)范設(shè)計(jì)。 3.技術(shù)規(guī)格 用途:信號(hào)轉(zhuǎn)換及隔離 過(guò)載輸入能力:電流:10×額定10秒 第二組輸出:可選擇 精確度: 交流: ≦±0.5% of F.S. 直流: ≦±0.2% of F.S. 輸入耗損: 交流電流:≤ 0.1VA; 交流電壓:≤ 0.15VA 反應(yīng)時(shí)間: ≤ 250msec (10%~90% of FS) 輸出波紋: ≤ ±0.1% of F.S. 滿量程校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 零點(diǎn)校正范圍:≤ ±10% of F.S.,2組輸出可個(gè)別調(diào)整 隔離:AC 2.0 KV 輸出1與輸出2之間 隔離抗阻:DC 500V 100MΩ 工作電源: AC 85~265V/DC 100~300V, 50/60Hz 或 AC/DC 20~56V (選購(gòu)規(guī)格) 消耗功率: DC 4W, AC 6.0VA 工作溫度: 0~60 ºC 工作濕度: 20~95% RH, 無(wú)結(jié)露 溫度系數(shù): ≤ 100PPM/ ºC (0~50 ºC) 儲(chǔ)存溫度: -10~70 ºC 保護(hù)等級(jí): IP 42 振動(dòng)測(cè)試: 1~800 Hz, 3.175 g2/Hz 外觀尺寸: 94.0mm x 94.0mm x 17.5mm 外殼材質(zhì): ABS防火材料,UL94V0 安裝軌道: 35mm DIN導(dǎo)軌 (EN50022) 重量: 250g 安全規(guī)范(LVD): IEC 61010 (Installation category 3) EMC: EN 55011:2002; EN 61326:2003 EMI: EN 55011:2002; EN 61326:2003 常用規(guī)格:AT-VA2-D-A3-DD-ADL 交直流轉(zhuǎn)換器,2組輸出,輸入交流輸入0-19.99mA,輸出1:4-20mA,輸出2:4-20mA,工作電源AC/DC20-56V
標(biāo)簽: 交直流 轉(zhuǎn)換器
上傳時(shí)間: 2013-11-22
上傳用戶:nem567397
? 磁性元件對(duì)功率變換器的重要性 ? 磁性元件的設(shè)計(jì)考慮與相應(yīng)模型 ? 磁性元件模型參數(shù)對(duì)電路性能的影響 ? 變壓器的渦流(場(chǎng))特性-損耗效應(yīng) ? 變壓器的磁(場(chǎng))特性-感性效應(yīng) ? 變壓器的電(場(chǎng))特性-容性效應(yīng)
標(biāo)簽: 開(kāi)關(guān)電源變壓器 模型
上傳時(shí)間: 2014-12-24
上傳用戶:ming52900
雙極型三極管的高頻小信號(hào)模型
標(biāo)簽: 雙極型三極管 高頻小信號(hào) 模型
上傳時(shí)間: 2013-10-20
上傳用戶:
AL-LJ(K)系列零序電流互感器 保定奧蘭電氣科技有限責(zé)任公司生產(chǎn)的AL-LJ(K)系列零序電流互感器經(jīng)電力工業(yè)部電氣設(shè)備質(zhì)量檢測(cè)中心檢測(cè),質(zhì)量?jī)?yōu)于國(guó)標(biāo)GB1208-1997《電流互感器》,具有精度高,線性度好,運(yùn)行可靠,安裝方便,外型美觀等特點(diǎn)。 零序電流互感器(電纜型)的孔徑范圍為Ф40~Ф360,有各種容量、變比、準(zhǔn)確限值系數(shù),可與小電流接地選線裝置、繼電器、儀表等配套使用,實(shí)現(xiàn)對(duì)系統(tǒng)的檢測(cè)和保護(hù)。裝置具有靈敏度高,線性度好等優(yōu)點(diǎn)。產(chǎn)品分整體式和組合式兩類。互感器采用工程塑料外殼、樹脂澆注全密封;外型美觀、安裝方便、節(jié)省安裝空間、規(guī)格品種多,可適用各種保護(hù)裝置和電力系統(tǒng)各種運(yùn)行方式(中性點(diǎn)接地,中性點(diǎn)不接地,大電阻接地,小電阻接地和消弧線圈接地)的需要。 空格:用于小電流接地選線裝置 A:與DD11/60型繼電器配合使用 J:用于微機(jī)型繼電保護(hù) B:與DL11/0.2型繼電器配合使用 保定市奧蘭電氣科技有限責(zé)任公司開(kāi)發(fā)生產(chǎn)的零序電流互感器是一種套在電纜上的CT,它的一次繞組為穿過(guò)CT內(nèi)孔的三相一次導(dǎo)體電纜,它的一次電流是一次三相電流的向量和(在正常、三相平衡時(shí)為0),當(dāng)發(fā)生一次系統(tǒng)單相接地時(shí)三相平衡關(guān)系被打破,這時(shí)零序電流互感器的二次就有電流輸出,供給保護(hù)裝置,實(shí)現(xiàn)保護(hù)和監(jiān)控。 零序電流互感器的一次絕緣就是電纜自身絕緣,所以這種零序電流互感器可以套在任一電壓等級(jí)的電纜上。
標(biāo)簽: 零序電流互感器
上傳時(shí)間: 2013-10-30
上傳用戶:fengzimili
蟲蟲下載站版權(quán)所有 京ICP備2021023401號(hào)-1