基于TMS320F2406A開發的DSP純數字PFC+ZVS移相全橋48V50A輸出開關電源sch
標簽: tms320f2406a dsp pfc 開關電源
上傳時間: 2022-07-25
上傳用戶:bluedrops
全國大學生電子設計(課題:波形的合成與分解) 1 任務 設計制作一個具有產生多個不同頻率的正弦信號,并將這些信號再合成為近似方波和三角波功能的電路。系統示意圖如圖1所示: 2要求 2.1 方波振蕩器的信號經分頻與濾波處理,同時產生頻率為1kHz和3kHz與5kHz的正弦波信號,這三種信號應具有確定的相位關系;產生的信號波形無明顯失真;幅度峰峰值分別為6V與2V和1.2V; 2.2制作一個由移相器和加法器構成的信號合成電路,將產生的1kHz和3kHz正弦波信號,作為基波和3次諧波,合成一個近似方波,波形幅度為5V,合成波形的形狀如圖2所示。 圖2 利用基波和3次諧波合成的近似方波 2.3 再用5kHz的正弦信號作為5次諧波,參與信號合成,使合成的波形更接近于方波,波形幅度為5V; 2.4根據三角波諧波的組成關系,設計一個新的信號合成電路,將產生的1kHz、3kHz、5kHz各個正弦信號,合成一個近似的三角波形,波形幅度為5V; 2.5合成波形的幅度與直流電平能數字設置和數控步進可調,步進值為0.5V和0.05V; 2.6設計制作一個能對各個正弦信號的幅度進行測量和數字顯示的電路,測量誤差不大于?5%; 2要求 2.1 方波振蕩器的信號經分頻與濾波處理,同時產生頻率為1kHz和3kHz與5kHz的正弦波信號,這三種信號應具有確定的相位關系;產生的信號波形無明顯失真;幅度峰峰值分別為6V與2V和1.2V; 2.2制作一個由移相器和加法器構成的信號合成電路,將產生的1kHz和3kHz正弦波信號,作為基波和3次諧波,合成一個近似方波,波形幅度為5V,合成波形的形狀如圖2所示。 圖2 利用基波和3次諧波合成的近似方波 2.3 再用5kHz的正弦信號作為5次諧波,參與信號合成,使合成的波形更接近于方波,波形幅度為5V; 2.4根據三角波諧波的組成關系,設計一個新的信號合成電路,將產生的1kHz、3kHz、5kHz各個正弦信號,合成一個近似的三角波形,波形幅度為5V; 2.5合成波形的幅度與直流電平能數字設置和數控步進可調,步進值為0.5V和0.05V; 2.6設計制作一個能對各個正弦信號的幅度進行測量和數字顯示的電路,測量誤差不大于?5%; 2要求 2.1 方波振蕩器的信號經分頻與濾波處理,同時產生頻率為1kHz和3kHz與5kHz的正弦波信號,這三種信號應具有確定的相位關系;產生的信號波形無明顯失真;幅度峰峰值分別為6V與2V和1.2V; 2.2制作一個由移相器和加法器構成的信號合成電路,將產生的1kHz和3kHz正弦波信號,作為基波和3次諧波,合成一個近似方波,波形幅度為5V,合成波形的形狀如圖2所示。 圖2 利用基波和3次諧波合成的近似方波 2.3 再用5kHz的正弦信號作為5次諧波,參與信號合成,使合成的波形更接近于方波,波形幅度為5V; 2.4根據三角波諧波的組成關系,設計一個新的信號合成電路,將產生的1kHz、3kHz、5kHz各個正弦信號,合成一個近似的三角波形,波形幅度為5V; 2.5合成波形的幅度與直流電平能數字設置和數控步進可調,步進值為0.5V和0.05V; 2.6設計制作一個能對各個正弦信號的幅度進行測量和數字顯示的電路,測量誤差不大于?5%; 2要求 2.1 方波振蕩器的信號經分頻與濾波處理,同時產生頻率為1kHz和3kHz與5kHz的正弦波信號,這三種信號應具有確定的相位關系;產生的信號波形無明顯失真;幅度峰峰值分別為6V與2V和1.2V; 2.2制作一個由移相器和加法器構成的信號合成電路,將產生的1kHz和3kHz正弦波信號,作為基波和3次諧波,合成一個近似方波,波形幅度為5V,合成波形的形狀如圖2所示。 圖2 利用基波和3次諧波合成的近似方波 2.3 再用5kHz的正弦信號作為5次諧波,參與信號合成,使合成的波形更接近于方波,波形幅度為5V; 2.4根據三角波諧波的組成關系,設計一個新的信號合成電路,將產生的1kHz、3kHz、5kHz各個正弦信號,合成一個近似的三角波形,波形幅度為5V; 2.5合成波形的幅度與直流電平能數字設置和數控步進可調,步進值為0.5V和0.05V; 2.6設計制作一個能對各個正弦信號的幅度進行測量和數字顯示的電路,測量誤差不大于?5%; 一起學習交流 QQ:853594759
上傳時間: 2013-10-11
上傳用戶:chongchong1234
PCB電路如微帶電路有較為顯著的介質和輻射損耗,而傳統金屬波導雖然損耗低、信號干擾小,但其結構很難做到小型化和集成。因此這兩種結構不適用于要求低功耗且空間尺寸受限的移動終端。采用基片集成波導(SIW)可同時降低損耗和增加可集成性,其兼備了金屬波導和平面電路的優良屬性,是未來5G毫米波終端應用場景最佳的選項之一。本文的主要內容包括:對SIw、波柬掃描陣、縫隙天線陣和Butler知陣多波束饋電網絡等基本原理進行了簡要的回顧。此四方面的知識是本文所有設計的理論支撐。系統梳理了siw.縫隙天線陣的設計步驟和Butler矩陣饋電網絡的分析方法。提出了將4 x4 Butler矩陣多波束饋電網絡用于木來5G終端天線的設計以實現多波束寬角度高增益信號覆蓋、本文選擇采用了多被束方案,并結合了sG移動終端設計了適用于5G終端的4x4 Buter矩陣多波束饋電網絡和縫隙天線陣,加工測試表明多波束方案基本可滿足未來5G終端天線的要求。在傳統4x4 Butler的基礎上,提出和設計了一款改進型的4x4 SIW Butler矩陣。從理論上驗證了方案的可行性且推導了各個器件須滿足的條件。新設計的Butler矩陣其核心是將移相器歸入到3dB定向耦合器的設計中。仿真和測試結果表明,改進型的4x4 SIW Butler矩陣不僅擁有更好的輸出幅相平坦度還具有比傳統4x4 SIW Butler矩陣更高的設計靈活性。設計了一款3x3 SIw Butler矩陣。首先給出了該款矩陣的設計思路來源,然后從原理上驗證了此矩陣設計的可行性和詳細地推導出了3x3 Butler短陣的結構和器件參數。仿真和結果表明,該型Butler矩陣比4×4 SIW Butler矩陣尺寸更小、結構更簡單,但具有和4×4 SIW Buter矩陣相當的增益值和波束覆蓋范圍。
上傳時間: 2022-06-20
上傳用戶:
現代雷達系統日益復雜,在設計、調試雷達系統的過程中,不可避免的需要雷達的回波信號,為了提高雷達設計效率,人們逐漸開始對雷達回波信號模擬技術進行研究,以求用模擬產生的信號代替實際的雷達回波信號,把雷達系統設計和維護過程中所需的費用降到最低?,F在,雷達信號模擬技術逐步取得發展,成為雷達技術的一個重要分支,而雷達信號模擬器的研制成為國內外軍事研究領域的熱門方向.所有無線電系統中都會包含射頻前端,射頻前端的主要作用是將基帶信號經過調制、上混頻、放大后送至天線發射,或是將天線接收到的信號放大、下混頻、解調,最后輸出基帶信號.本課題正是對某機載相控陣雷達目標模擬器射頻前端的研究。該射頻前端系統包括兩個部分:發射機通道和射頻功率合成網絡,發射機通道由三條雜波信號通道和一條目標信號通道組成,每條通道相當于一臺射頻發射機.在發射機通道中首先對基帶1、Q信號進行調制,然后兩次上混頻使輸出信號到達x波段。射頻功率合成網絡主要的功能是使用功分器將目標信號一分為四,利用數控衰減器對四路目標信號進行方向圖增益調制,調制后其中一路信號送至天線系統,另外三路分別與三路雜波信號功率合成,最后輸出至雷達,該項目中筆者主要負責對整體方案和指標的論證,多路信號幅相平衡度的調整,x波段0/i移相器的設計與實現,整機的功能指標測試,與其它分機聯調等工作.本文首先介紹了該機載相控陣雷達目標模擬器的整體方案,然后對無線發射機系統進行了分析,接下來對射頻前端方案進行論證,之后詳述了多路信號幅相校正的方法與0/n移相器的研制,給出了射頻前端系統的測試結果.
標簽: 雷達
上傳時間: 2022-06-20
上傳用戶:
近年來,光伏發電技術取得了長足的進步,太陽能已經成為當今能源的一個重要補充。光伏并網發電是太陽能大規模利用的必然趨勢。本文以光伏并網發電系統的核心設備并網逆變器為研究對象,首先給出了單相光伏并網逆變器的詳細的硬件設計過程,然后對光伏陣列的最大功能點跟蹤、逆變器的特性及控制方法、并網系統的人機交互子系統等進行了深入的研究。 并網逆變器的硬件設計是整個系統的基礎和難點之一。本文設計了1套額定功率為3KW的兩級式光伏并網逆變器,采用F2812DSP作為系統的控制核心。文章對整個硬件的設計過程和電路原理進行了詳細分析。 為提高系統效率,光伏陣列都要求工作在最大功率點處。本文在分析了各種MPPT方法的優缺點的基礎上,提出了基于移相全橋電路的電導增量法,給出了整個算法在DSP中的實現過程。 并網逆變器輸出級的跟蹤控制技術是系統設計的關鍵點之一。本文詳細分析了逆變器輸出級的電路工作模式和數學模型,深入分析了T型輸出濾波器的原理及電網電壓對輸出電流的影響,提出了基于前饋補償的數字PI控制,并給出了其在DSP中的實現過程。 為完成對并網系統的監控和設置,設計了人機交互子系統,該系統是一個小型嵌入式系統,用MODBUS協議實現了子系統和控制系統的通信。本文詳細分析了整個子系統的軟硬件設計過程。 最后,對整個系統進行了實驗驗證,結果表明了系統方案的可行性,系統實現了穩定可靠運行。
上傳時間: 2013-05-26
上傳用戶:88mao
多電平逆變器中每個功率器件承受的電壓相對較低,因此可以用低耐壓功率器件實現高壓大容量逆變器,且采用多電平變換技術可以顯著提高逆變器輸出電壓的質量指標。因此,隨著功率器件的不斷發展,采用多電平變換技術將成為實現高壓大容量逆變器的重要途徑和方法。本文選取其中一種極具優勢的多電平拓撲結構一級聯多電平變頻器作為研究對象,完成了其拓撲結構、控制策略及測控系統的設計。 @@ 首先,對多電平變頻器的研究意義,國內外現狀進行了分析,比較了三種成熟拓撲結構的特點,得出了級聯型多電平變頻器的優點,從而將其作為研究對象。對比分析了四種調制策略,確定載波移相二重化的調制方法和恒壓頻比的控制策略,進行數學分析和理論仿真,得出了選擇的正確性及可行性。并指出了級聯單元個數與載波移相角的關系和調制比對輸出電壓的影響;完成了級聯變頻器數學模型的建立和死區效應的分析。 @@ 其次,完成了相關硬件的設計,包括DSP、CPLD、IPM的選型,系統電源的設計、檢測(轉速、電流、電壓、故障)電路的設計、通信電路的設計等。用Labwindows/CVI實現了上位機界面的編寫,實現了開關機、設定轉速、通信配置、電壓電流轉速檢測、電流軟件濾波、諧波分析。編寫了下位機DSP的串口通信、AD轉換、轉速檢測(QEP)以及部分控制程序。 @@ 最后,在實驗臺上完成硬件和軟件的調試,成功的實現了變頻器載波移相SPWM的多電平輸出,并驅動異步電機進行了空載變頻試驗,測控界面能準確的與下位機進行通信,快捷的給定各種控制命令,并能實時的顯示變頻器的輸出頻率、輸出電壓和輸出電流,為實驗調試增加了方便性,提高了工作效率。 @@關鍵詞:級聯多電平逆變器;載波移相;IPM;DSP;Labwindows/CVI;測控界面
上傳時間: 2013-04-24
上傳用戶:米卡
隨著電力電子技術的發展,對大功率、高性能的開關電源要求也越來越高。功率因數校正(PFC)技術是當前電力電子技術研究的熱點問題。大多數電力電子裝置通過整流器與電網接口,而傳統的二極管或晶閘管整流裝置會產生大量的諧波電流,對電網造成污染。許多國家和國際組織相繼制定了一系列限制用電設備諧波的標準。有源功率因數校正技術能夠有效的消除整流裝置的諧波,因此具有廣泛的應用前景。 本文首先分析了開關電源的發展現狀及發展要求,詳細地闡述了開關電源的基本構成和基本組態。然后研究了ZVT-Boost軟開關PFC電路的基本結構、基本工作原理及軟開關實現原理,在此基礎上確定了主電路結構,并制定了控制系統方案。 鑒于功率要求,本文采用兩級PFC電路。因此對常見的DC-DC變換器的拓撲結構、原理特性進行分析。并針對各自的變換器建立了簡化模型,基于所建立的模型分析了變換器的特性,列出各變換器的優缺點及在設計開關電源時的選用原則。最后,對所設計的系統進行了仿真分析。 本文根據用戶的要求研究設計了一種大功率高性能開關電源。該開關電源分為前級和后級,前級為采用BOOST結構的單相有源功率因數校正電路,后級為采用移相控制軟開關技術的全橋變換器。最后研制出了實驗樣機,并給出了實驗樣機的功率因數校正電路和移相全橋軟開關變換電路的實驗波形。
上傳時間: 2013-04-24
上傳用戶:朗朗乾坤
隨著電力電子技術的迅速發展,雙向DC/DC變換器的應用日益廣泛。尤其是軟開關技術的出現,使雙向DC/DC變換器不斷朝著高效化、小型化、高頻化和高性能化的方向發展,軟開關技術的應用可以降低雙向DC/DC變換器的開關損耗,提高變換器的工作效率,為變換器的高頻化提供可能性,從而減小變換器的體積,提高變換器的動態性能。雙向DC/DC變換器在直流不停電電源系統、航空電源系統、電動汽車等車載電源系統、直流功率放大器以及蓄電池儲能等場合都得到了廣泛的應用。 本論文首先在研究硬開關的缺陷上,提出軟開關技術;然后在研究雙向DC/DC變換器的基本工作原理的基礎上,對雙向DC/DC變換器的應用及軟開關雙向DC/DC變換器的幾種拓撲結構進一步闡述;把軟開關技術和雙向DC/DC變換器技術有機地結合在一起,提出一種新型的雙向DC/DC變換器的拓撲結構。該雙向DC/DC變換器的降壓變換電路采用移相控制ZVSPWMDC/DC變換器;升壓變換電路采用Boost升壓和推挽式升壓兩種變換器相結合的兩級升壓的新型變換器。 在分別對移相控制ZVSPWMDC/DC變換器和Boost推挽式DC/DC變換器的工作原理進行分析研究的基礎上,使用PSpice9.2計算機仿真軟件對變換器的主電路進行仿真和分析,驗證該新型雙向DC/DC變換器的拓撲結構設計的正確性和可行性。
上傳時間: 2013-04-24
上傳用戶:2525775
近些年來,隨著電力電子技術的發展,電力電子系統集成受到越來越多的關注,其中標準化模塊的串并聯技術成為研究熱點之一。輸入并聯輸出串聯型(Input-Parallel and Output-Series,IPOS)組合變換器適用于大功率高輸出電壓的場合。 要保證IPOS組合變換器正常工作,必須保證其各模塊的輸出電壓均衡。本文首先揭示了IPOS組合變換器中每個模塊輸入電流均分和輸出電壓均分之間的關系,在此基礎上提出一種輸出均壓控制方案,該方案對系統輸出電壓調節沒有影響。選擇移相控制全橋(Full-Bridge,FB)變換器作為基本模塊,對n個全橋模塊組成的IPOS組合變換器建立小信號數學模型,推導出采用輸出均壓控制方案的IPOS-FB系統的數學模型,該模型證明各模塊輸出均壓閉環不影響系統輸出電壓閉環的調節,給出了模塊輸出均壓閉環和系統輸出電壓閉環的補償網絡參數設計。對于IPOS組合變換器,采用交錯控制,由于電流紋波抵消效應,輸入濾波電容容量可大大減小;由于電壓紋波抵消作用,在相同的系統輸出電壓紋波下,各模塊的輸出濾波電容可大大減小,由此可以提高變換器的功率密度。 根據所提出的輸出均壓控制策略,在實驗室研制了一臺由兩個1kW全橋模塊組成的IPOS-FB原理樣機,每個模塊輸入電壓為270V,輸出電壓為180V。并進行了仿真和實驗驗證,結果均表明本控制方案是正確有效的。
上傳時間: 2013-06-17
上傳用戶:cwyd0822
軟開關技術是電力電子裝置向高頻化、高功率密度化發展的關鍵技術,已成為現代電力電子技術研究的熱點之一。微處理器的出現促進了電力電子變換器的控制技術從傳統的模擬控制轉向數字控制,數字控制技術可使控制電路大為簡化,并能提高系統的抗干擾能力、控制靈活性、通用性以及智能化程度。本文提出了一種利用耦合輸出電感的新型次級箝位ZVZCS PWM DC/DC變換器,其反饋控制采用數字化方式。 論文分析了該新型變換器的工作原理,推導了變換器各種狀態時的參數計算方程;設計了以ARW芯片LPC2210為核心的數字化反饋控制系統,通過軟件設計實現了PWM移相控制信號的輸出;運用Pspice9.2軟件成功地對變換器進行了仿真,分析了各參數對變換器性能的影響,并得出了變換器的優化設計參數;最后研制出基于該新型拓撲和數字化控制策略的1千瓦移相控制零電壓零電流軟開關電源,給出了其主電路、控制電路、驅動電路、保護電路及高頻變壓器等的設計過程,并在實驗樣機上測量出了實際運行時的波形。 理論分析與實驗結果表明:該變換器拓撲能實現超前橋臂的零電壓開關,滯后橋臂的零電流開關;采用ARM微控制器進行數字控制,較傳統的純模擬控制實時反應速度更快、電源穩壓性能更好、外圍電路更簡單、設計更靈活等,為實現智能化數字電源創造了基礎,具有廣泛的應用前景和巨大的經濟價值。
上傳時間: 2013-08-03
上傳用戶:cc1