arm9
上傳時間: 2013-10-23
上傳用戶:zhishenglu
第一章 引論 1.1 計算機網絡和協議 1.1.1 計算機網絡 1.1.2 協 議 1.1.3 計算機網絡體系結構 1.2 局域網 1.2.1 概 述 1.2.2 局域網協議 1.3 現場總線 1.3.1 背景和發展 1.3.2 概念和主要特點 1.4 控制器局部網(CAN) 1.4.1 CAN的分層結構 1.4.2 邏輯鏈路控制(LLC)子層 1.4.3 媒體訪問控制(MAC)子層 1.4.4 物理層 第二章 CAN控制器及有關器件
上傳時間: 2013-10-12
上傳用戶:qwer0574
2008年,我參加了幾次可編程器件供應商舉辦的技術研討會,讓我留下深刻印象的是參加這些研討會的工程師人數之多,簡直可以用爆滿來形容,很多工程師聚精會神地全天聽講,很少出現吃完午飯就閃人的現象,而且工程師們對研討會上展出的基于可編程器件的通信、消費電子、醫療電子、工業等解決方案也有濃厚的興趣,這和其他器件研討會形成了鮮明的對比。 Garnter和iSuppli公布的數據顯示:2008年,全球半導體整體銷售出現25年以來首次萎縮現象,但是,可編程器件卻還在保持了增長,預計2008年可編程邏輯器件(PLD)市場銷售額增長7.6%,可編程器件的領頭羊美國供應商賽靈思公司2008年營業收入預計升6.5%!在全球經濟危機的背景下,這是非常驕人的業績!也足見可編程器件在應用領域的熱度沒有受到經濟危機的影響!這可能也解釋了為什么那么多工程師對可編程器件感興趣吧。 在與工程師的交流中,我發現,很多工程師非常需要普及以FPGA為代表的可編程器件的應用開發知識,也有很多工程師苦于進階無門,缺乏專業、權威性的指導,在Google上搜索后,我發現很少有幫助工程師設計的FPGA電子書,即使有也只是介紹一些概念性的基礎知識,缺乏實用性和系統性,于是,我萌生了出版一本指導工程師FPGA應用開發電子書的想法,而且這個電子書要突出實用性,讓大家都可以免費下載,并提供許多技巧和資源信息,很高興美國賽靈思公司對這個想法給予了大力支持,賽靈思公司亞太區市場經理張俊偉小姐和高級產品經理梁曉明先生對電子書提出了寶貴的意見,并提供了大量FPGA設計資源,也介紹了一些FPGA設計高手參與了電子書的編撰,很短的時間內,一個電子書項目團隊組建起來,北京郵電大學的研究生田耘先生和賽靈思公司上海辦事處的蘇同麒先生等人都參與了電子書的編寫,他們是有豐富設計經驗的高手,在大家的共同努力下,這本凝結著智慧的FPGA電子書終于和大家見面了!我希望這本電子書可以成為對FPGA有興趣或正在使用FPGA進行開發的工程師的手頭設計寶典之一,也希望這個電子書可以對工程師們學習FPGA開發和進階有實用的幫助!如果可能,未來我們還將出版后續版本!
上傳時間: 2013-11-10
上傳用戶:wab1981
第一步,拿到一塊PCB,首先在紙上記錄好所有元氣件的型號,參數,以及位置,尤其是二極管,三機管的方向,IC缺口的方向。最好用數碼相機拍兩張元氣件位置的照片。第二步,拆掉所有器件,并且將PAD孔里的錫去掉。用酒精將PCB清洗干凈,然后放入掃描儀內,啟動POHTOSHOP,用彩色方式將絲印面掃入,并打印出來備用。第三步,用水紗紙將TOP LAYER 和BOTTOM LAYER兩層輕微打磨,打磨到銅膜發亮,放入掃描儀,啟動PHOTOSHOP,用彩色方式將兩層分別掃入。注意,PCB在掃描儀內擺放一定要橫平樹直,否則掃描的圖象就無法使用。第四步,調整畫布的對比度,明暗度,使有銅膜的部分和沒有銅膜的部分對比強烈,然后將次圖轉為黑白色,檢查線條是否清晰,如果不清晰,則重復本步驟。如果清晰,將圖存為黑白BMP格式文件TOP.BMP和BOT.BMP。第五步,將兩個BMP格式的文件分別轉為PROTEL格式文件,在PROTEL中調入兩層,如過兩層的PAD和VIA的位置基本重合,表明前幾個步驟做的很好,如果有偏差,則重復第三步。第六,將TOP。BMP轉化為TOP。PCB,注意要轉化到SILK層,就是黃色的那層,然后你在TOP層描線就是了,并且根據第二步的圖紙放置器件。畫完后將SILK層刪掉。 第七步,將BOT。BMP轉化為BOT。PCB,注意要轉化到SILK層,就是黃色的那層,然后你在BOT層描線就是了。畫完后將SILK層刪掉。第八步,在PROTEL中將TOP。PCB和BOT。PCB調入,合為一個圖就OK了。第九步,用激光打印機將TOP LAYER, BOTTOM LAYER分別打印到透明膠片上(1:1的比例),把膠片放到那塊PCB上,比較一下是否有誤,如果沒錯,你就大功告成了。
上傳時間: 2013-11-24
上傳用戶:ynzfm
Pspice教程課程內容:在這個教程中,我們沒有提到關于網絡表中的Pspice 的網絡表文件輸出,有關內容將會在后面提到!而且我想對大家提個建議:就是我們不要只看波形好不好,而是要學會分析,分析不是分析的波形,而是學會分析數據,找出自己設計中出現的問題!有時候大家可能會看到,其實電路并沒有錯,只是有時候我們的仿真設置出了問題,需要修改。有時候是電路的參數設計的不合理,也可能導致一些莫明的錯誤!我覺得大家做一個分析后自己看看OutFile文件!點,就可以看到詳細的情況了!基本的分析內容:1.直流分析2.交流分析3.參數分析4.瞬態分析進階分析內容:1. 最壞情況分析.2. 蒙特卡洛分析3. 溫度分析4. 噪聲分析5. 傅利葉分析6. 靜態直注工作點分析數字電路設計部分淺談附錄A: 關于Simulation Setting的簡介附錄B: 關于測量函數的簡介附錄C:關于信號源的簡介
上傳時間: 2013-10-14
上傳用戶:31633073
磁芯電感器的諧波失真分析 摘 要:簡述了改進鐵氧體軟磁材料比損耗系數和磁滯常數ηB,從而降低總諧波失真THD的歷史過程,分析了諸多因數對諧波測量的影響,提出了磁心性能的調控方向。 關鍵詞:比損耗系數, 磁滯常數ηB ,直流偏置特性DC-Bias,總諧波失真THD Analysis on THD of the fer rite co res u se d i n i nductancShi Yan Nanjing Finemag Technology Co. Ltd., Nanjing 210033 Abstract: Histrory of decreasing THD by improving the ratio loss coefficient and hysteresis constant of soft magnetic ferrite is briefly narrated. The effect of many factors which affect the harmonic wave testing is analysed. The way of improving the performance of ferrite cores is put forward. Key words: ratio loss coefficient,hysteresis constant,DC-Bias,THD 近年來,變壓器生產廠家和軟磁鐵氧體生產廠家,在電感器和變壓器產品的總諧波失真指標控制上,進行了深入的探討和廣泛的合作,逐步弄清了一些似是而非的問題。從工藝技術上采取了不少有效措施,促進了質量問題的迅速解決。本文將就此熱門話題作一些粗淺探討。 一、 歷史回顧 總諧波失真(Total harmonic distortion) ,簡稱THD,并不是什么新的概念,早在幾十年前的載波通信技術中就已有嚴格要求<1>。1978年郵電部公布的標準YD/Z17-78“載波用鐵氧體罐形磁心”中,規定了高μQ材料制作的無中心柱配對罐形磁心詳細的測試電路和方法。如圖一電路所示,利用LC組成的150KHz低通濾波器在高電平輸入的情況下測量磁心產生的非線性失真。這種相對比較的實用方法,專用于無中心柱配對罐形磁心的諧波衰耗測試。 這種磁心主要用于載波電報、電話設備的遙測振蕩器和線路放大器系統,其非線性失真有很嚴格的要求。 圖中 ZD —— QF867 型阻容式載頻振蕩器,輸出阻抗 150Ω, Ld47 —— 47KHz 低通濾波器,阻抗 150Ω,阻帶衰耗大于61dB, Lg88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB Ld88 ——并聯高低通濾波器,阻抗 150Ω,三次諧波衰耗大于61dB FD —— 30~50KHz 放大器, 阻抗 150Ω, 增益不小于 43 dB,三次諧波衰耗b3(0)≥91 dB, DP —— Qp373 選頻電平表,輸入高阻抗, L ——被測無心罐形磁心及線圈, C ——聚苯乙烯薄膜電容器CMO-100V-707APF±0.5%,二只。 測量時,所配用線圈應用絲包銅電磁線SQJ9×0.12(JB661-75)在直徑為16.1mm的線架上繞制 120 匝, (線架為一格) , 其空心電感值為 318μH(誤差1%) 被測磁心配對安裝好后,先調節振蕩器頻率為 36.6~40KHz, 使輸出電平值為+17.4 dB, 即選頻表在 22′端子測得的主波電平 (P2)為+17.4 dB,然后在33′端子處測得輸出的三次諧波電平(P3), 則三次諧波衰耗值為:b3(+2)= P2+S+ P3 式中:S 為放大器增益dB 從以往的資料引證, 就可以發現諧波失真的測量是一項很精細的工作,其中測量系統的高、低通濾波器,信號源和放大器本身的三次諧波衰耗控制很嚴,阻抗必須匹配,薄膜電容器的非線性也有相應要求。濾波器的電感全由不帶任何磁介質的大空心線圈繞成,以保證本身的“潔凈” ,不至于造成對磁心分選的誤判。 為了滿足多路通信整機的小型化和穩定性要求, 必須生產低損耗高穩定磁心。上世紀 70 年代初,1409 所和四機部、郵電部各廠,從工藝上改變了推板空氣窯燒結,出窯后經真空罐冷卻的落后方式,改用真空爐,并控制燒結、冷卻氣氛。技術上采用共沉淀法攻關試制出了μQ乘積 60 萬和 100 萬的低損耗高穩定材料,在此基礎上,還實現了高μ7000~10000材料的突破,從而大大縮短了與國外企業的技術差異。當時正處于通信技術由FDM(頻率劃分調制)向PCM(脈沖編碼調制) 轉換時期, 日本人明石雅夫發表了μQ乘積125 萬為 0.8×10 ,100KHz)的超優鐵氧體材料<3>,其磁滯系數降為優鐵
上傳時間: 2013-12-15
上傳用戶:天空說我在
隨著總線和接口技術的發展,在工業場合如何更加可靠、快速、便捷地進行數據傳輸成為該領域通信的研究重點之一。而USB技術以其高速、可靠、通用性強等一系列特點在過去的十多年時間里發展迅猛,而USB OTG技術的誕生,使得兩USB設備在沒有PC參與的情況下進行數據傳輸成為可能。本文通過搭建以16位微處理器MSP430F149為核心控制芯片、ISPl362為USB接口芯片的硬件平臺,分別實現了USB部分主機和從機功能,使之能進行USB數據的存儲與交換。本文完成以下工作:首先,認真研究USB協議,深入理解USB通信的基本概念和傳輸方式等內容。仔細分析USB Mass Storage類協議,并討論了采用BULK-ONLY傳輸實現Mass Storage類協議的方法,并對SCSI指令集等進行了深入的剖析。其次,根據要求,設計出由控制、接口、數據存儲、過流保護與供電切換電路等硬件模塊組成的系統,在ALTIUM 2004軟件上完成原理圖的設計和PCB圖的布局、布線,并完成硬件調試工作。再次,在已構建的硬件平臺上,針對ISPl362 USB接口芯片的主/從機功能,分別設計了USB主機和從機的固件程序。利用IAR Workbench、BusHound等軟件進行固件程序的調試,最終USB主機可對u盤進行檢測、識別與配置;USB設備實現了USB設備的基本功能,能夠被Windows XP操作系統識別,與PC機之間實現數據的批量傳輸。最后,用DriverWorks軟件包的Driver Wizard生成驅動程序框架,并利用Windows DDK和vc++等軟件進行驅動程序的編譯,最終生成基于Windows操作系統的WDM型USB設備驅動程序。通過對USB通信協議的研究,本人成功地構建了以MsP430F149和ISPl362為核心的硬件試驗平臺,并在此平臺上進行USB主機、從機通信試驗。經測試表明,PC機能檢測、識別、讀寫USB設備,其讀取與寫入速度分別為560KB/s和312Ⅺ玳。而主機能識別、配置接入的U盤。關鍵詞:USB主機、USB從機、MSI'430F149、ISPl362、BuR-Only傳輸
上傳時間: 2013-10-11
上傳用戶:淺言微笑
本書由Java技術的創建者編寫,對Java 2平臺標準版,V1.2中新增加的包及類進行了描述。本書主要由包概述和類描述構成。包概述對每個包及其所有類進行了簡要描述,另外還畫出了包中的類的繼承層次結構示意圖。每個類描述都獨自構成一個小節,包含了類層次結構示意圖、類描述、類示例、成員概述以及那些在版本1.2中作了修改或新增的類成員的描述。還詳細說明了Java軟件開發包(JDK)1.1到從版本1.2對類及方法所作的修改。需要指出的是:本書是補充版本,有些材料需要參閱《The Java Class Libraries, Second Edition, Volume 1》一書的內容。 本書是參考手冊而不是指導手冊,它不對Java語言進行解釋。為了快速定位所需要的類或類成員的信息,本書按類的字母順序組織。 本書由趙皚、黃志軍、陽亮組織翻譯,參加本書翻譯的還有姚遠、程子進、肖利平、劉永亮、薛亮、毛靜萍、查海平、趙峰、郭樹廂、曹波、肖斌、彭建明、鄭歡。參加錄入工作的有陳軍、姜明、姜志明、張志榮等。 希望本書能夠幫助Java程序員獲取完整、專業和權威的信息,同時也希望本書能夠幫助讀者更全面地了解Java語言。由于水平有限和時間倉促,本書的翻譯必定會存在一些紕漏,懇切希望廣大讀者批評指正。
上傳時間: 2014-01-27
上傳用戶:cainaifa
VC小知識 學習VC++時經常會遇到鏈接錯誤LNK2001,該錯誤非常討厭,因為對于 編程者來說,最好改的錯誤莫過于編譯錯誤,而一般說來發生連接錯誤時, 編譯都已通過。產生連接錯誤的原因非常多,尤其LNK2001錯誤,常常使人不 明其所以然。如果不深入地學習和理解VC++,要想改正連接錯誤LNK2001非 常困難。
上傳時間: 2015-02-24
上傳用戶:libenshu01
線程通信 本 文 我 們 將 在VC++4.1 環 境 下 介 紹 一 個 父 進 程 和 其 子 進 程 的 通 信 實 例。 在 父 進 程Parent 窗 口 中 按 一 下 鼠 標 左 鍵, 就 會 產 生 一 個Pipe 和 啟 動 子 進 程Child, 并 從Pipe 一 端 發 送 信 息, 同 時Child 啟 動 后 會 創 建 一 個 工 作 線 程, 專 門 用 來 從 管 道 的 另 一 端 讀 入 數 據。 通 過 父 進 程 菜 單 項 的 控 制 來 改 變 圖 形 形 狀 參 數, 并 傳 給Child 使 之 在 自 己 的 窗 口 中 繪 出 響 應 的 圖 形。 下 面 分 別 就 父 進 程Parent 和 子 進 程Child 來 進 行 說 明。
上傳時間: 2015-02-26
上傳用戶:hopy