RSA算法 :首先, 找出三個數, p, q, r, 其中 p, q 是兩個相異的質數, r 是與 (p-1)(q-1) 互質的數...... p, q, r 這三個數便是 person_key,接著, 找出 m, 使得 r^m == 1 mod (p-1)(q-1)..... 這個 m 一定存在, 因為 r 與 (p-1)(q-1) 互質, 用輾轉相除法就可以得到了..... 再來, 計算 n = pq....... m, n 這兩個數便是 public_key ,編碼過程是, 若資料為 a, 將其看成是一個大整數, 假設 a < n.... 如果 a >= n 的話, 就將 a 表成 s 進位 (s
標簽:
person_key
RSA
算法
上傳時間:
2013-12-14
上傳用戶:zhuyibin
問題描述
序列Z=<B,C,D,B>是序列X=<A,B,C,B,D,A,B>的子序列,相應的遞增下標序列為<2,3,5,7>。
一般地,給定一個序列X=<x1,x2,…,xm>,則另一個序列Z=<z1,z2,…,zk>是X的子序列,是指存在一個嚴格遞增的下標序列〈i1,i2,…,ik〉使得對于所有j=1,2,…,k使Z中第j個元素zj與X中第ij個元素相同。
給定2個序列X和Y,當另一序列Z既是X的子序列又是Y的子序列時,稱Z是序列X和Y的公共子序列。
你的任務是:給定2個序列X、Y,求X和Y的最長公共子序列Z。
標簽:
lt
序列
上傳時間:
2014-01-25
上傳用戶:netwolf