伺服驅動系統作為現代工業生產設備的重要驅動源之一,是工廠自動化不可缺少的基礎技術.隨著現代工業的快速發展,對現代電伺服系統提出越來越高的要求,而以高性能正弦波永磁同步電動機(簡稱PMSM)作為伺服電機的PMSM伺服系統因共具有較傳統的DC伺服系統和普通AC伺服系統優越的性能和良好的發展潛力而日益贏得廣泛青睞并已成為當前電伺服務系統發展和研究的重點和熱點之一.為此,該文以極具發展前景的PMSM位置伺服驅動系統為研究對象,在綜合分析現代電伺服系統發展趨勢和借鑒前人研究成果的基礎上,針對發展高性能PMSM位置伺服系統的需要并結合控制理論新的發展,從通過采用先進控制策略改進其控制器性能的角度著手,提出了基于反饋控制、滑模控制、模糊控制等為基礎而集成的智能滑模控制策略,為進一步豐富和發展PMSM伺服系統的控制策略提出了新的思路和方法.
上傳時間: 2013-06-12
上傳用戶:郭靜0516
該文主要研究超聲波電機的傳動機理、數學模型、結構設計、驅動系統和精密伺服系統的理論和實踐,為超聲波電機的進一步研究和產業化奠定基礎.該文主要內容和研究成果如下:系統地總結了國內外超聲波電機的研究歷史、發展現狀和主要應用,研究了超聲波電機的運行機理.研制了超聲波電機專用、高抗干擾能力,高可靠性、兩相正交、正弦超聲波驅動電源,分別探討了使用串聯電感和并聯電感實施負載阻抗匹配時,電機性能所受到的影響.研制了利用電機定子上壓電陶瓷的孤極反饋來進行頻率調整的新型頻率跟蹤控制器,實現了超聲波電機速度的穩定性控制. 實現了超聲波電機高精度位置檢測,研制了基于DSP的超聲波電機精密伺服控制系統,完成了采用驅動頻率/相位的P、PI和自適應控制方案進行精密定位控制的理論探討和實驗研究,井進行了模糊控制的理論探討.在理論研究的基礎上,成功地研制了環形超聲波電機及其精密定位控制系統.單元電機最大轉矩1N. m,控制精度2.16′.
上傳時間: 2013-07-15
上傳用戶:tianjinfan
近年來,隨著人們生活的改善,機動車輛得到迅速發展,其排放的尾氣己造成城市空氣嚴重污染,一些城市相繼制定法規限制摩托車和燃油助力車的使用來保護環境。于是發展綠色交通工具已成為一個重要的課題。電動車具有輕便、無污染、低噪音和價格低廉的特點,成為比較理想的交通工具。開關磁阻電機的結構簡單、控制靈活、可靠性高、能在較寬的速度范圍內高效運行、而且堅固耐用,適合于在惡劣條件下應用等特點決定了其非常適合于車輛負載。 本文主要研究四相8/6極開關磁阻電機傳動系統在兩輪電動車中的應用,設計了以AVR單片機為主控芯片的電動車控制器。1.根據開關磁阻電機的結構和工作原理,建立了SR 電機的數學模型,分析并確定了開關磁阻電機的位置信號檢測方法,制定了該系統使用的控制策略:采用轉速外環、電流內環的雙閉環控制,通過AVR單片機片內定時器/計時器T/C2輸出的PWM斬波調壓間接地調節電流以控制電機的轉速。2.以AVR單片機為核心,設計了開關磁阻電機控制系統的各硬件電路,主要有電源轉換電路和電壓采樣電路、系統功率電路及MOSFET驅動電路、位置信號檢測電路和電流檢測與保護電路。3.在硬件電路的基礎上設計了系統的控制軟件,并對電動車的剎車、過流保護、欠壓保護和定速巡航等功能加以改善和提高。最后對所開發的系統進行了調試,通過實驗得到的速度電流波形證實了該控制器的可行性。
上傳時間: 2013-07-25
上傳用戶:qiuqing
超聲波電機(Ultrasonic Motor簡稱USM)是八十年代發展起來的新型微電機。本文針對超聲波電機及其控制技術的研究現狀和發展趨勢,以我國研究技術相對比較成熟并有產業化前景的行波超聲波電機(Traveling-wave Ultrasonic Motor簡稱TUSM)的伺服控制技術為研究對象,以直徑60mm的行波超聲波電機TUSM60為研究實例,在特性測試、動穩態性能分析,辨識模型建立、控制策略與控制算法的選擇與實現等方面展開研究。本論具體的研究內容為: 在分析超聲波電機研究歷史和現狀的基礎上,結合國內外超聲波電機特別是行波超聲波電機控制技術的發展趨勢,重點論述了行波超聲波電機及其驅動控制技術的研究進展。 介紹行波超聲波電機的基本結構,并從該電機的主要理論基礎--壓電原理、行波合成、接觸模型出發,分析了行波超聲波電機定子質點的運動方程.并結合定轉子摩擦接觸特點,分析了行波超聲波電機的運行機理。 根據對行波超聲波電機測試和高精度控制的要求,研制出基于雙DSP和FPGA的超聲波電機高性能測試控制平臺。其中控制核心采用了雙DSP結構,可以在對行波超聲波電機進行控制的同時,將必要的參數讀取出來進行分析和研究。為行波超聲波電機瞬態特性分析以及控制策略、控制算法的深入研究打下了基礎。 對電機的瞬態、穩態特性進行的測試,可以分析驅動頻率、電壓以及相位差等調節量對電機輸出的影響。在此基礎上進一步對行波超聲波電機的調節方式、控制算法選擇方面進行分析,并得到相應結論。 通過對實驗數據的總結和歸納,利用系統辨識中的非參數方法,建立在特定頻率條件下的近似線性模型。在行波超聲波電機工作范圍內,辨識若干組不同頻率條件下的近似線性模型,將這些模型的參數進行二維或三維擬合,可以得到一個關于行波超聲波電機傳遞函數的模型。辨識模型的建立為合理的選擇和優化控制參數,控制效果的驗證等提供了行之有效的手段。 在對行波超聲波電機的速度控制、位置控制展開的研究中.首先利用遺傳算法對常規PI恒轉速控制的控制參數整定及修正方法進行了研究;利用神經元的在線自學習能力,研究和設計單神經元PID-PI轉速控制器,提高控制系統對電機非線性和時變性的適應能力;為了消除在伺服控制中,單一調節量(驅動頻率)情況下,低轉速的跳躍問題,研究和討論了多調節量分段控制方法,并利用模糊控制對控制方法的有效性進行了驗證;在位置控制中,利用轉速控制研究的結果,研究和設計了位置--速度雙環(串級)控制器,實現了電機高精度位置伺服控制。 通過對已有控制系統的改進和簡化,設計和研制了具有實用化價值行波超聲波電機控制器:并將研究成果應用于針對核磁成像設備而設計的行波超聲波電機隨動控制系統中,同時嘗試了將該控制器用于高精度X-Y兩維定位平臺。
上傳時間: 2013-07-13
上傳用戶:mpquest
本文首先簡述了交流調速系統的發展和研究重點,介紹了異步電機調速系統的不同控制策略,詳細論述了異步電機矢量控制系統的基本原理:異步電機的數學模型和坐標變換、矢量控制的基本方程式、轉子磁鏈的觀測方法、矢量控制的系統結構等,并重點分析了空間矢量脈寬調制(SVPWM)技術的基本原理、控制算法以及在TMS320LF2407中的實現方法。 從工程實際應用出發,本文設計和開發了一套以DSP芯片TMS320LF2407為核心的有速度傳感器異步電機矢量控制系統,并給出了硬件和軟件的實現方法。該系統的功率電路采用電壓型的交-直-交變壓變頻結構,由整流電路、濾波電路及智能功率模塊IPM(PM15RSH120)逆變電路構成;控制電路以DSP芯片TMS320LF2407為核心,加上PWM信號發生電路、定子電流檢測電路、直流母線電壓檢測電路、智能功率模塊驅動電路、速度檢測電路、系統保護電路等,構成了功能齊全的異步電機全數字化矢量控制系統。 在此基礎上,本文對無速度傳感器異步電機矢量控制系統進行了有益的探索。提出了改進的電壓型轉子磁鏈估算模型,消除了電壓型轉子磁鏈估算模型中純積分環節所固有的漂移問題和積累誤差對實際系統性能的影響。在傳統型參考自適應系統基礎上,將系統中原有的自適應調節機構用一個具有在線學習能力的模糊神經網絡取代,提出一種基于模糊神經網絡的異步電機轉速估計方法,并給出了速度估計器的模糊神經網絡結構和學習算法。最后對基于模糊神經網絡轉速估計的異步電機矢量控制系統進行了仿真,結果表明該系統具有良好的性能。
上傳時間: 2013-07-02
上傳用戶:amandacool
在目前全球能源危機和溫室效應越來越嚴重的情況下,電動車(Electric Vehicle)以其無污染、低噪聲、效率高,便于操作等優點,越來越受到人們的青睞。本課題與華中科技大學辜承林教授聯合,為蘇州益高電動車輛制造有限公司設計旅游車無刷電機驅動系統。課題結合現代CPU技術、數字技術和電力電子技術,設計了一款以無位置傳感器無刷直流電機為動力的大功率汽車輪轂驅動控制器。 本課題采用辜老師設計的“橫向磁通無刷直流電動機”為控制對象。本文首先分析了無刷直流電機的數學模型和無位置傳感器的反電勢過零點檢測的基本原理,從整體上對控制系統的各個方面進行了討論并確定了整體設計方案。在課題中,本人采用DSP 2407A作為控制核心,以功率MOS管為逆變器件,研制出系統硬件,用C語言編制了系統軟件。鑒于該課題在大電流等級的無刷直流電機應用中,國內外尚無先例,本項目在開發實驗中,對無位置傳感器無刷電機的起動和反電勢過零檢測作了大量的研究工作,取得許多有益的科研實踐經驗。通過對電機的起動過程和位置檢測方法進行的一些有效改進措施,使得電機達到較好的運行性能和操控特性。 實驗結果表明本項目設計方案有效可行,研制的無位置傳感器無刷直流電機控制器達到設計的預期基本性能指標。
上傳時間: 2013-04-24
上傳用戶:qq1604324866
近年來,由于能源危機和環境污染,世界各國均在投巨資發展燃料電池汽車。雙向DC/DC變換器作為燃料電池汽車的中重要部件,需要隨著行駛狀態的改變,頻繁地切換其工作狀態,其動態性能好壞,直接決定汽車動力系統的響應速度。本文主要致力于對DC/DC變換器在不同控制策略下的動態性能進行研究,并在保證其穩態性能的前提下提高系統動態性能。 本文首先研究了線性控制策略下DC/DC變換器的動態性能。介紹了閉環控制系統在頻域和時域的動態性能指標以及二者之間的關系。當系統受到外部干擾較小時,采用頻域分析方法,對Buck和Boost變換器進行了小信號建模,并對其在不同線性補償網絡控制作用下的動態性能進行對比分析。當系統受到較大干擾時,采用時域分析方法,文中介紹了DC/DC變換器大信號建模方法,并對PID參數在工程上整定方法加以分析。 DC/DC變換器是一非線性系統,應用線性控制策略不可避免地存在一定局限性—動態性能和穩態性能之間的矛盾。針對這一問題,引入了模糊—PI控制,將其應用于DC/DC變換器,以在保持系統穩態性能不變的前提下,提高其動態性能。以Buck DC/DC變換器為例,詳細介紹了模糊-PI控制器的設計過程,并對設計的閉環控制系統用MATLAB進行建模與仿真。最后,通過實驗對比驗證了模糊—PI控制的有效性。 和線性控制策略相比,模糊—PI控制在一定程度上提高了系統的動態性能,但效果有限。本文引入了另一種非線性控制策略——滑模控制策略。滑模控制策略是目前動態性能最好的控制策略之一,可以極佳地發揮系統的硬件潛能。 本文首先介紹了滑模控制相關知識,推導了其應用于Buck和Boost變換器的理論基礎。設計出針對不同被控對象和工作狀態的控制策略,對每種控制策略通過仿真分析驗證其有效性。就滑模控制存在的靜差問題、抖振問題和變頻問題均提出了行之有效的解決方案。快速響應特性
上傳時間: 2013-08-01
上傳用戶:yw14205
如何解決能源危機問題,已經成為全球關注的熱點。在當前可利用的幾種可再生能源中,太陽能和風能是應用比較廣泛的兩種。太陽能、風能在資源條件和技術應用上都有很好的互補特性,綜合考慮太陽能和風能在多方面的互補特性而建立起來的風光互補發電系統是一種經濟合理的供電方式。小型風光互補發電系統可以滿足遠離電網地區的獨立供電的需求。 本論文的主要工作如下: 1、分析了小型風光互補發電系統的結構,研究了小型風光互補發電系統各個組成部分的工作原理及其運行特性。 2、分析了風力發電、光伏發電以及蓄電池充電的控制策略,重點研究了最大功率點跟蹤控制,并在此基礎上,歸納總結出一套可行的總體控制方案。 3、設計了一個以dsPIC30F2010單片機為核心的小型風光互補發電系統控制器,對開關電源電路、電流檢測電路、電壓檢測電路、DC/DC變換電路、卸載電路等模塊電路進行了硬件設計,在軟件方面,采用功能塊設計的方法,對AD采樣、PWM控制、光伏充電、風機充電、卸載保護、PI控制、狀態顯示和過放保護等進行了軟件編程。 4、對控制器進行了實驗調試,實驗結果表明本文研究開發的小型風光互補發電控制器結構簡單,能夠實現光伏發電和風力發電的最大功率點跟蹤控制,滿足蓄電池分段式充電以及過充、過放保護的要求。
上傳時間: 2013-08-01
上傳用戶:zaizaibang
異步電動機變頻調速系統的頻率范圍、動態響應、調速精度、低頻轉矩、工作效率等方面具有很大優點。隨著電力電子技術和計算機技術的飛躍發展,以此為基礎的交流電機變頻調速技術也取得了長足的進步,基于SVPWM的異步電動機矢量控制系統作為現代交流傳動控制的一個重要研究方向,逐漸成為研究的熱點。 異步電動機調速系統是一個多變量、強耦合的非線性系統,雖然常規的PID控制算法簡單、可靠性高,但對于異步電動機這樣的非線性系統控制效果一般。模糊控制作為智能控制的一個重要的分支,由于不需要建立對象的精確數學模型,且具有良好的魯棒性和非線性的控制特性,非常適用于異步電動機調速系統。本文以提高異步電動機的調速精度和改善電動機的使用效率為目標,基于SVPWM的控制原理,分別采用傳統PID控制器和模糊PID控制器,應用在異步電動機的調速系統中。 本文首先介紹了異步電動機調速方法和逆變器的PWM控制方法。并闡述了矢量控制、坐標變換、空間電壓矢量調制的基本原理,給出了異步電動機在不同坐標系下的數學模型,為設計異步電動機矢量控制系統奠定了基礎。同時給出了傳統PID控制器和模糊PID控制器模型。為驗證控制效果,文中基于MATLAB/Simulink平臺,建立了控制器的計算機仿真模型,給出了仿真結果,并對結果做了詳細的分析。比較了傳統PID控制和模糊PID控制的效果,由仿真結果可以看出采用模糊PID控制算法具有較大的優越性。 最后,以TI公司的DSP控制芯片TMS320F2812為控制核心,設計了異步電動機的控制系統,硬件系統主要包括主電路、功率驅動電路、電壓、電流檢測電路等電路。另外設計了控制軟件,并給出了軟件的流程圖。通過實驗測得的波形,驗證了控制方法的正確性和有效性。
上傳時間: 2013-05-17
上傳用戶:dpuloku
選相控制開關又稱同步開關或相控開關,其實質就是控制開關在電壓或電流的期望相位完成合閘或分閘,以主動消除開關過程所產生的涌流和過電壓等電磁暫態效應,提高開關的開斷能力。本論文首先分析了提高斷路器可靠性的途徑,介紹了相控開關的研究意義及其優點;相控開關的基本原理和分合閘操作過程,為同步開關選相控制器的設計提供了理論依據。 永磁操動機構是近幾年正在發展的一種新型操動機構,它利用永久磁鐵產生的磁力將真空斷路器保持在分合閘位置,而無需任何傳統機械脫扣鎖扣裝置。它機構零部件少,結構簡單,使斷路器動作的可靠性大大提高。二次控制回路采用電子控制模塊,動作迅速并可以實現精確時間控制,采用開關電源輸入范圍寬,輸入輸出用光耦隔離,功耗低,極大地提高了可靠性,使永磁機構真空斷路器成為真正意義的免維護智能化斷路器。單線圈永磁機構結構簡單、體積小,在中壓領域得到越來越廣泛的應用。相控真空開關采用三相獨立操動的單線圈永磁機構,其操作電源為由大功率電力電子器件控制的儲能大容量電容器,通過多次的測試結果表明單線圈永磁機構能很好地滿足相控開關的要求,是相控開關的理想選擇。 本文詳細介紹了以Mega16為控制核心的單線圈永磁機構智能控制器,這種控制系統集保護、控制、開關量監測等功能于一體。可實現對電容電壓實時顯示,具有過電流速斷保護、過電壓和欠電壓保護、閉鎖以及報警等功能。 通過相關試驗測試,表明本系統已經初步達到了設計所要達到的預期效果,為以后的研究以及同步控制系統的完善和優化提供了有益的經驗和參考。
上傳時間: 2013-07-02
上傳用戶:一諾88